IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v37y2022ics187454822200018x.html
   My bibliography  Save this article

An assessment of frameworks for heterogeneous aircraft operations in low-altitude airspace

Author

Listed:
  • Ali, Busyairah Syd
  • Saji, Sam
  • Su, Moon Ting

Abstract

In the past decade, the utilization of drones has been increasing for various civilian and military applications. The drones’ operations occupy Class G airspace, which is uncontrolled, though it is regulated. The growing number of applications for drones indicates future traffic in Class G airspace. Therefore, many researchers, in both academia and industry, have proposed conceptual frameworks for Unmanned Aircraft Systems Traffic Management (UTM). Implementation of a traffic management system in the Class G airspace is deemed crucial to ensure safe and efficient management of the aircraft – both manned and unmanned – flying in the airspace. This research aimed to investigate if the existing frameworks for UTM comply with the operational and system requirements of an air traffic management system and more precisely for unmanned aircraft operations in a mixed-mode operational environment. This research answers the following research questions: (i) What are the existing UTM frameworks? (ii) What are the operational requirements for a UTM system? (iii) What are the system requirements for a UTM system? (iv) What is the compliance level of all existing UTM frameworks?

Suggested Citation

  • Ali, Busyairah Syd & Saji, Sam & Su, Moon Ting, 2022. "An assessment of frameworks for heterogeneous aircraft operations in low-altitude airspace," International Journal of Critical Infrastructure Protection, Elsevier, vol. 37(C).
  • Handle: RePEc:eee:ijocip:v:37:y:2022:i:c:s187454822200018x
    DOI: 10.1016/j.ijcip.2022.100528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S187454822200018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2022.100528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Syd Ali, Busyairah, 2019. "Traffic management for drones flying in the city," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    2. Akshat Kasliwal & Noah J. Furbush & James H. Gawron & James R. McBride & Timothy J. Wallington & Robert D. De Kleine & Hyung Chul Kim & Gregory A. Keoleian, 2019. "Role of flying cars in sustainable mobility," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. Cohen, Adam & Shaheen, Susan, 2021. "Urban Air Mobility: Opportunities and Obstacles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0r23p1gm, Institute of Transportation Studies, UC Berkeley.
    3. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    4. Raoul Rothfeld & Mengying Fu & Miloš Balać & Constantinos Antoniou, 2021. "Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Yang, Chao & Lu, Zhexi & Wang, Weida & Wang, Muyao & Zhao, Jing, 2023. "An efficient intelligent energy management strategy based on deep reinforcement learning for hybrid electric flying car," Energy, Elsevier, vol. 280(C).
    7. Thuy-Hang Tran & Dinh-Dung Nguyen, 2022. "Management and Regulation of Drone Operation in Urban Environment: A Case Study," Social Sciences, MDPI, vol. 11(10), pages 1-19, October.
    8. Jiadi Zhang & Ilya Kolmanovsky & Mohammad Reza Amini, 2021. "Stochastic Drift Counteraction Optimal Control of a Fuel Cell-Powered Small Unmanned Aerial Vehicle," Energies, MDPI, vol. 14(5), pages 1-21, February.
    9. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Decker, Christopher & Chiambaretto, Paul, 2022. "Economic policy choices and trade-offs for Unmanned aircraft systems Traffic Management (UTM): Insights from Europe and the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 40-58.
    11. Mulrow, John & Derrible, Sybil & Samaras, Constantine, 2019. "Sociotechnical convex hulls and the evolution of transportation activity: A method and application to US travel survey data," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    12. Annitsa Koumoutsidi & Ioanna Pagoni & Amalia Polydoropoulou, 2022. "A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    13. Bulusu, Vishwanath & Sengupta, Raja, 2020. "Urban Air Mobility: Viability of Hub-Door and Door-Door Movement by Air," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6wq6x800, Institute of Transportation Studies, UC Berkeley.
    14. Laura C. Aguilar Esteva & Akshat Kasliwal & Michael S. Kinzler & Hyung Chul Kim & Gregory A. Keoleian, 2021. "Circular economy framework for automobiles: Closing energy and material loops," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 877-889, August.
    15. Adam, Cohen & Susan, Shaheen, 2021. "Urban Air Mobility: Opportunities and Obstacles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3mg6z1wf, Institute of Transportation Studies, UC Berkeley.
    16. Maria Cieśla & Aleksander Sobota & Marianna Jacyna, 2020. "Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea," Sustainability, MDPI, vol. 12(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:37:y:2022:i:c:s187454822200018x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.