IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v124y2025ics0969699724001960.html
   My bibliography  Save this article

Package delivery by electric vertical takeoff and landing aircraft? An attractiveness assessment

Author

Listed:
  • Perez, Daniel
  • Zou, Bo
  • Farazi, Nahid Parvez

Abstract

Electric vertical takeoff and landing aircraft (eVTOLs) are gaining growing interest recently. However, limited attention has been paid to the prospect of using eVTOLs for package delivery. To fill this void, this paper explores the attractiveness of eVTOL-based package delivery in terms of cost, energy consumption, and CO2 emissions. Given that eVTOLs cannot take off/land at customer doorsteps, a two-leg system design is proposed and formulated as an optimization model. To implement the model, we consider multiple plausible eVTOL and ground vehicle types, their cost economics, and energy use and CO2 emission characteristics. Applying the model in the Chicago metro region, we find that the attractiveness of eVTOL-based package delivery depends critically on the eVTOL and ground vehicle types. With an appropriate eVTOL-ground vehicle combination, eVTOL-based delivery can be attractive compared to van-only delivery in terms of total shipping cost, but not necessarily so from the energy and emission perspectives. This highlights the need for future R&D to further enhance the energy efficiency of eVTOLs. When designing eVTOL-based package delivery systems, the importance to account for the potential interactions between eVTOL traffic and commercial air traffic should also be recognized.

Suggested Citation

  • Perez, Daniel & Zou, Bo & Farazi, Nahid Parvez, 2025. "Package delivery by electric vertical takeoff and landing aircraft? An attractiveness assessment," Journal of Air Transport Management, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s0969699724001960
    DOI: 10.1016/j.jairtraman.2024.102731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699724001960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2024.102731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rajendran, Suchithra & Zack, Joshua, 2019. "Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 470-505.
    2. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    3. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    4. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    5. Carlos F. Daganzo, 2005. "Logistics Systems Analysis," Springer Books, Springer, edition 0, number 978-3-540-27516-9, December.
    6. Ahamed, Tanvir & Zou, Bo & Farazi, Nahid Parvez & Tulabandhula, Theja, 2021. "Deep Reinforcement Learning for Crowdsourced Urban Delivery," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 227-257.
    7. Cohen, Adam & Shaheen, Susan, 2021. "Urban Air Mobility: Opportunities and Obstacles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0r23p1gm, Institute of Transportation Studies, UC Berkeley.
    8. Escribano Macias, Jose & Khalife, Carl & Slim, Joseph & Angeloudis, Panagiotis, 2023. "An integrated vertiport placement model considering vehicle sizing and queuing: A case study in London," Journal of Air Transport Management, Elsevier, vol. 113(C).
    9. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    10. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    11. James F. Campbell, 1993. "One-to-Many Distribution with Transshipments: An Analytic Model," Transportation Science, INFORMS, vol. 27(4), pages 330-340, November.
    12. Guido Perboli & Roberto Tadei & Daniele Vigo, 2011. "The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics," Transportation Science, INFORMS, vol. 45(3), pages 364-380, August.
    13. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    14. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity," Journal of Air Transport Management, Elsevier, vol. 112(C).
    15. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    16. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    17. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    18. Akshat Kasliwal & Noah J. Furbush & James H. Gawron & James R. McBride & Timothy J. Wallington & Robert D. De Kleine & Hyung Chul Kim & Gregory A. Keoleian, 2019. "Role of flying cars in sustainable mobility," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petit, Victor & Ribeiro, Marta, 2025. "Multi-objective vertiport location optimization for a middle-mile package delivery framework: Case study in the South Holland Region," Journal of Air Transport Management, Elsevier, vol. 125(C).
    2. Huang, Yixiao & Savelsbergh, Martin & Zhao, Lei, 2018. "Designing logistics systems for home delivery in densely populated urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 95-125.
    3. Farazi, Nahid Parvez & Zou, Bo, 2024. "Planning electric vertical takeoff and landing aircraft (eVTOL)-based package delivery with community noise impact considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    4. Junyu Cao & Mariana Olvera-Cravioto & Zuo-Jun (Max) Shen, 2020. "Last-Mile Shared Delivery: A Discrete Sequential Packing Approach," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1466-1497, November.
    5. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    6. Zhang, Zhuoye & Zhang, Fangni, 2024. "Optimal operation strategies of an urban crowdshipping platform in asset-light, asset-medium, or asset-heavy business format," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    7. Yang, Dingtong & Hyland, Michael F. & Jayakrishnan, R., 2024. "Tackling the crowdsourced shared-trip delivery problem at scale with a novel decomposition heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    8. Fontaine, Pirmin & Minner, Stefan & Schiffer, Maximilian, 2023. "Smart and sustainable city logistics: Design, consolidation, and regulation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1071-1084.
    9. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    10. Wang, Li & Xu, Min & Qin, Hu, 2023. "Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 111-135.
    11. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    12. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    13. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    14. Zhao, Ying & Feng, Tao, 2025. "Commuter choice of UAM-friendly neighborhoods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    15. Philine Schiewe & Moritz Stinzendörfer, 2024. "Optimizing combined tours: The truck-and-cargo-bike case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(2), pages 545-587, June.
    16. Su, E. & Qin, Hu & Li, Jiliu & Pan, Kai, 2023. "An exact algorithm for the pickup and delivery problem with crowdsourced bids and transshipment," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    17. Li, Jian & Cang, Lu & Wu, Yisheng & Zhang, Zhaotong, 2025. "Two-echelon collaborative many-to-many pickup and delivery problem for agricultural wholesale markets with workload balance," Omega, Elsevier, vol. 130(C).
    18. Snoeck, André & Winkenbach, Matthias, 2020. "The value of physical distribution flexibility in serving dense and uncertain urban markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 151-177.
    19. Matthias Winkenbach & Paul R. Kleindorfer & Stefan Spinler, 2016. "Enabling Urban Logistics Services at La Poste through Multi-Echelon Location-Routing," Transportation Science, INFORMS, vol. 50(2), pages 520-540, May.
    20. Di Huang & Weiping Tong & Lumeng Wang & Xun Yang, 2019. "An Analytical Model for the Many-to-One Demand Responsive Transit Systems," Sustainability, MDPI, vol. 12(1), pages 1-17, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s0969699724001960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.