IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v13y2011i6p496-502.html
   My bibliography  Save this article

Integrating natural risks into silvicultural decision models: A survival function approach

Author

Listed:
  • Staupendahl, Kai
  • Möhring, Bernhard

Abstract

In the context of climate change, the frequency and intensity of natural disturbances of silvicultural production, such as storms and insects, are expected to increase. Hence, now more than ever before such factors must be considered in forest management. As a contribution to this topic, this article presents a calculation model implemented in Excel frames, which supports decisions in forest production under changing conditions. Risk is integrated into the model by the Weibull function, which serves as an age-dependent survival function. In order to facilitate an intuitive interpretation of its coefficients, it was used in a reparametrised form. Furthermore, salvage price reductions and cost additions caused by calamities are considered. The target variable is the 'annuity under risk'. We demonstrate exemplarily how different parameters of the survival function influence the probability distribution and thus the expected value of the annuity of a spruce stand. The differences between the annuities with and without a consideration of risk are interpreted as current, annual risk costs. It can be shown that risk lowers the annuity, whereas scenarios with high risks in the young stand stages have a higher impact than those with high risks in mature stands. In the latter case, adaptation is possible by shortening the rotation period. This does not hold in the case of early risks, which cannot be avoided. For this case, an extension of the rotation length is recommended. By changing the parameters of the survival function, this scheme allows forest managers to incorporate changing risks into their management planning.

Suggested Citation

  • Staupendahl, Kai & Möhring, Bernhard, 2011. "Integrating natural risks into silvicultural decision models: A survival function approach," Forest Policy and Economics, Elsevier, vol. 13(6), pages 496-502, July.
  • Handle: RePEc:eee:forpol:v:13:y:2011:i:6:p:496-502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S138993411100075X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    2. Dieter, Matthias, 2001. "Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques," Forest Policy and Economics, Elsevier, vol. 2(2), pages 157-166, June.
    3. Holecy, Jan & Hanewinkel, Marc, 2006. "A forest management risk insurance model and its application to coniferous stands in southwest Germany," Forest Policy and Economics, Elsevier, vol. 8(2), pages 161-174, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koster, Roman & Fuchs, Jasper M., 2022. "Opportunity costs of growing space – an essential driver of economical single-tree harvest decisions," Forest Policy and Economics, Elsevier, vol. 135(C).
    2. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    3. Loisel, Patrice, 2020. "Under the risk of destructive event, are there differences between timber income based and carbon sequestration based silviculture?," Forest Policy and Economics, Elsevier, vol. 120(C).
    4. Loisel, Patrice, 2014. "Impact of storm risk on Faustmann rotation," Forest Policy and Economics, Elsevier, vol. 38(C), pages 191-198.
    5. Anna Jönsson & Fredrik Lagergren & Benjamin Smith, 2015. "Forest management facing climate change - an ecosystem model analysis of adaptation strategies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 201-220, February.
    6. Roessiger, Joerg & Griess, Verena C. & Härtl, Fabian & Clasen, Christian & Knoke, Thomas, 2013. "How economic performance of a stand increases due to decreased failure risk associated with the admixing of species," Ecological Modelling, Elsevier, vol. 255(C), pages 58-69.
    7. McTaggart, Ewan & Megiddo, Itamar & Kleczkowski, Adam, 2023. "The effect of pests and pathogens on forest harvesting regimes: A bioeconomic model," Ecological Economics, Elsevier, vol. 209(C).
    8. Knoke, Thomas & Gosling, Elizabeth & Thom, Dominik & Chreptun, Claudia & Rammig, Anja & Seidl, Rupert, 2021. "Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations," Ecological Economics, Elsevier, vol. 185(C).
    9. Friedrich, Stefan & Paul, Carola & Brandl, Susanne & Biber, Peter & Messerer, Katharina & Knoke, Thomas, 2019. "Economic impact of growth effects in mixed stands of Norway spruce and European beech – A simulation based study," Forest Policy and Economics, Elsevier, vol. 104(C), pages 65-80.
    10. Félix Bastit & Marielle Brunette & Claire Montagne-Huck, 2021. "Earth, wind and fire: A multi-hazard risk review for natural disturbances in forests," Working Papers of BETA 2021-25, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    11. Thomas Knoke & Carola Paul & Elizabeth Gosling & Isabelle Jarisch & Johannes Mohr & Rupert Seidl, 2023. "Assessing the Economic Resilience of Different Management Systems to Severe Forest Disturbance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(2), pages 343-381, February.
    12. Thiele, Jan C. & Nuske, Robert S. & Ahrends, Bernd & Panferov, Oleg & Albert, Matthias & Staupendahl, Kai & Junghans, Udo & Jansen, Martin & Saborowski, Joachim, 2017. "Climate change impact assessment—A simulation experiment with Norway spruce for a forest district in Central Europe," Ecological Modelling, Elsevier, vol. 346(C), pages 30-47.
    13. Fuchs, Jasper M. & v. Bodelschwingh, Hilmar & Lange, Alexander & Paul, Carola & Husmann, Kai, 2022. "Quantifying the consequences of disturbances on wood revenues with Impulse Response Functions," Forest Policy and Economics, Elsevier, vol. 140(C).
    14. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.
    15. Susaeta, Andres, 2018. "On Pressler’s indicator rate formula under the generalized Reed model," Journal of Forest Economics, Elsevier, vol. 30(C), pages 32-37.
    16. Härtl, Fabian & Knoke, Thomas, 2014. "The influence of the oil price on timber supply," Forest Policy and Economics, Elsevier, vol. 39(C), pages 32-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Félix Bastit & Marielle Brunette & Claire Montagne-Huck, 2021. "Earth, wind and fire: A multi-hazard risk review for natural disturbances in forests," Working Papers of BETA 2021-25, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    2. Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
    3. Nürnberger, Karin & Hahn, Andreas & Jörg, Rößiger & Thomas, Knoke, 2013. "Unerwünschte Effekte der Einkommensteuergesetzgebung auf die Wahl waldbaulicher Alternativen: Eine Simulationsstudie aus der Sicht eines risikomeidenden Entscheiders," 53rd Annual Conference, Berlin, Germany, September 25-27, 2013 156102, German Association of Agricultural Economists (GEWISOLA).
    4. Meilby, Henrik & Brazee, Richard J., 12. "Sustainibility and Long-term Dynamics of Forests: Methods and Metrics for Detection of Convergence and Stationarity," Scandinavian Forest Economics: Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, Scandinavian Society of Forest Economics, issue 40, May.
    5. Knoke, Thomas & Kindu, Mengistie & Jarisch, Isabelle & Gosling, Elizabeth & Friedrich, Stefan & Bödeker, Kai & Paul, Carola, 2020. "How considering multiple criteria, uncertainty scenarios and biological interactions may influence the optimal silvicultural strategy for a mixed forest," Forest Policy and Economics, Elsevier, vol. 118(C).
    6. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    7. Dai, Yongwu & Chang, Hung-Hao & Liu, Weiping, 2015. "Do forest producers benefit from the forest disaster insurance program? Empirical evidence in Fujian Province of China," Forest Policy and Economics, Elsevier, vol. 50(C), pages 127-133.
    8. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    9. Brunette, M. & Holecy, J. & Sedliak, M. & Tucek, J. & Hanewinkel, M., 2015. "An actuarial model of forest insurance against multiple natural hazards in fir (Abies Alba Mill.) stands in Slovakia," Forest Policy and Economics, Elsevier, vol. 55(C), pages 46-57.
    10. Michaela Korená Hillayová & Klára Báliková & Blanka Giertliová & Josef Drábek & Ján Holécy, 2021. "Possibilities of forest property insurance against the risk of fire in Slovakia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(5), pages 204-211.
    11. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    12. Pedro Cosme da Costa Vieira, 2008. "Integrating fire risk into the management of forests," FEP Working Papers 290, Universidade do Porto, Faculdade de Economia do Porto.
    13. Härtl, Fabian & Knoke, Thomas, 2014. "The influence of the oil price on timber supply," Forest Policy and Economics, Elsevier, vol. 39(C), pages 32-42.
    14. Dragicevic, Arnaud & Lobianco, Antonello & Leblois, Antoine, 2016. "Forest planning and productivity-risk trade-off through the Markowitz mean-variance model," Forest Policy and Economics, Elsevier, vol. 64(C), pages 25-34.
    15. Marielle Brunette & Stephane Couture, 2018. "Risk management activities of a non-industrial privateforest owner with a bivariate utility function," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 99(3-4), pages 281-302.
    16. L. Ferreira & M. Constantino & J. Borges, 2014. "A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 359-377, August.
    17. Marielle Brunette & Marc Hanewinkel, 2021. "Assurance financière et assurance naturelle : une application à la forêt," Working Papers of BETA 2021-28, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    18. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    19. Price, Colin & Sjølie, Hanne Kathrine & Caurla, Sylvain & Yousefpour, Rasoul & Meilby, Henrik, 2020. "Optimal rotations with declining discount rate: incorporating thinning revenues and crop formation costs in a cross-European comparison," Forest Policy and Economics, Elsevier, vol. 118(C).
    20. Roessiger, Joerg & Griess, Verena C. & Härtl, Fabian & Clasen, Christian & Knoke, Thomas, 2013. "How economic performance of a stand increases due to decreased failure risk associated with the admixing of species," Ecological Modelling, Elsevier, vol. 255(C), pages 58-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:13:y:2011:i:6:p:496-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.