IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v84y2023i2d10.1007_s10640-022-00719-5.html
   My bibliography  Save this article

Assessing the Economic Resilience of Different Management Systems to Severe Forest Disturbance

Author

Listed:
  • Thomas Knoke

    (Technical University of Munich)

  • Carola Paul

    (University of Goettingen)

  • Elizabeth Gosling

    (Technical University of Munich)

  • Isabelle Jarisch

    (Technical University of Munich)

  • Johannes Mohr

    (Technical University of Munich)

  • Rupert Seidl

    (Technical University of Munich)

Abstract

Given the drastic changes in the environment, resilience is a key focus of ecosystem management. Yet, the quantification of the different dimensions of resilience remains challenging, particularly for long-lived systems such as forests. Here we present an analytical framework to study the economic resilience of different forest management systems, focusing on the rate of economic recovery after severe disturbance. Our framework quantifies the post-disturbance gain in the present value of a forest relative to a benchmark system as an indicator of economic resilience. Forest values and silvicultural interventions were determined endogenously from an optimization model and account for risks affecting tree survival. We consider the effects of differences in forest structure and tree growth post disturbance on economic resilience. We demonstrate our approach by comparing the economic resilience of continuous cover forestry against a clear fell system for typical conditions in Central Europe. Continuous cover forestry had both higher economic return and higher economic resilience than the clear fell system. The economic recovery from disturbance in the continuous cover system was between 18.2 and 51.5% faster than in the clear fell system, resulting in present value gains of between 1733 and 4535 € ha−1. The advantage of the continuous cover system increased with discount rate and stand age, and was driven by differences in both stand structure and economic return. We conclude that continuous cover systems can help to address the economic impacts of increasing disturbances in forest management.

Suggested Citation

  • Thomas Knoke & Carola Paul & Elizabeth Gosling & Isabelle Jarisch & Johannes Mohr & Rupert Seidl, 2023. "Assessing the Economic Resilience of Different Management Systems to Severe Forest Disturbance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(2), pages 343-381, February.
  • Handle: RePEc:kap:enreec:v:84:y:2023:i:2:d:10.1007_s10640-022-00719-5
    DOI: 10.1007/s10640-022-00719-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-022-00719-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-022-00719-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quaas, Martin & Baumgärtner, Stefan & De Lara, Michel, 2019. "Insurance value of natural capital," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    2. Emmanuelle Augeraud-Véron & Giorgio Fabbri & Katheline Schubert, 2019. "The Value of Biodiversity as an Insurance Device," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1068-1081.
    3. Montagné-Huck, Claire & Brunette, Marielle, 2018. "Economic analysis of natural forest disturbances: A century of research," Journal of Forest Economics, Elsevier, vol. 32(C), pages 42-71.
    4. Olli Tahvonen, 2015. "Economics of Naturally Regenerating, Heterogeneous Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 309-337.
    5. Friedrich, Stefan & Paul, Carola & Brandl, Susanne & Biber, Peter & Messerer, Katharina & Knoke, Thomas, 2019. "Economic impact of growth effects in mixed stands of Norway spruce and European beech – A simulation based study," Forest Policy and Economics, Elsevier, vol. 104(C), pages 65-80.
    6. Staupendahl, Kai & Möhring, Bernhard, 2011. "Integrating natural risks into silvicultural decision models: A survival function approach," Forest Policy and Economics, Elsevier, vol. 13(6), pages 496-502, July.
    7. Franklin, Sergio L. & Pindyck, Robert S., 2018. "Tropical Forests, Tipping Points, and the Social Cost of Deforestation," Ecological Economics, Elsevier, vol. 153(C), pages 161-171.
    8. Mäler, Karl-Göran & Li, Chuan-Zhong, 2010. "Measuring sustainability under regime shift uncertainty: a resilience pricing approach," Environment and Development Economics, Cambridge University Press, vol. 15(6), pages 707-719, December.
    9. Knoke, Thomas & Gosling, Elizabeth & Thom, Dominik & Chreptun, Claudia & Rammig, Anja & Seidl, Rupert, 2021. "Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations," Ecological Economics, Elsevier, vol. 185(C).
    10. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    11. Wu, Tong & Kim, Yeon-Su, 2013. "Pricing ecosystem resilience in frequent-fire ponderosa pine forests," Forest Policy and Economics, Elsevier, vol. 27(C), pages 8-12.
    12. Roessiger, Joerg & Griess, Verena C. & Härtl, Fabian & Clasen, Christian & Knoke, Thomas, 2013. "How economic performance of a stand increases due to decreased failure risk associated with the admixing of species," Ecological Modelling, Elsevier, vol. 255(C), pages 58-69.
    13. Schaub, Sergei & Buchmann, Nina & Lüscher, Andreas & Finger, Robert, 2020. "Economic benefits from plant species diversity in intensively managed grasslands," Ecological Economics, Elsevier, vol. 168(C).
    14. Manley, Bruce & Bare, B. Bruce, 2001. "Computing maximum willingness to pay with Faustmann's formula: some special situations from New Zealand," Forest Policy and Economics, Elsevier, vol. 2(2), pages 179-193, June.
    15. Dieter, Matthias, 2001. "Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques," Forest Policy and Economics, Elsevier, vol. 2(2), pages 157-166, June.
    16. Härtl, Fabian & Hahn, Andreas & Knoke, Thomas, 2010. "Integrating neighbourhood effects in the calculation of optimal final tree diameters," Journal of Forest Economics, Elsevier, vol. 16(3), pages 179-193, August.
    17. Claire Montagné-Huck & Marielle Brunette, 2018. "A Bibliographic Database on Economic Analysis of Natural Forest Disturbances," Post-Print hal-02091626, HAL.
    18. Emmanuelle Augeraud-Véron & Giorgio Fabbri & Katheline Schubert, 2019. "The Value of Biodiversity as an Insurance Device," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1068-1081.
    19. Aino Assmuth & Janne Rämö & Olli Tahvonen, 2021. "Optimal Carbon Storage in Mixed-Species Size-Structured Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 249-275, June.
    20. Hans Pretzsch & Peter Biber & Gerhard Schütze & Enno Uhl & Thomas Rötzer, 2014. "Forest stand growth dynamics in Central Europe have accelerated since 1870," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    21. Perrings, Charles, 2006. "Resilience and sustainable development," Environment and Development Economics, Cambridge University Press, vol. 11(4), pages 417-427, August.
    22. Naomi Radke & Klaus Keller & Rasoul Yousefpour & Marc Hanewinkel, 2020. "Identifying decision-relevant uncertainties for dynamic adaptive forest management under climate change," Climatic Change, Springer, vol. 163(2), pages 891-911, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zamora-Pereira, Juan Carlos & Hanewinkel, Marc & Yousefpour, Rasoul, 2023. "Robust management strategies promoting ecological resilience and economic efficiency of a mixed conifer-broadleaf forest in Southwest Germany under the risk of severe drought," Ecological Economics, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Félix Bastit & Marielle Brunette & Claire Montagne-Huck, 2021. "Earth, wind and fire: A multi-hazard risk review for natural disturbances in forests," Working Papers of BETA 2021-25, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    2. Knoke, Thomas & Kindu, Mengistie & Jarisch, Isabelle & Gosling, Elizabeth & Friedrich, Stefan & Bödeker, Kai & Paul, Carola, 2020. "How considering multiple criteria, uncertainty scenarios and biological interactions may influence the optimal silvicultural strategy for a mixed forest," Forest Policy and Economics, Elsevier, vol. 118(C).
    3. Knoke, Thomas & Gosling, Elizabeth & Thom, Dominik & Chreptun, Claudia & Rammig, Anja & Seidl, Rupert, 2021. "Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations," Ecological Economics, Elsevier, vol. 185(C).
    4. Félix Bastit & David W. Shanafelt & Marielle Brunette, 2023. "Stability and resilience of a forest bio-economic equilibrium under natural disturbances," Working Papers of BETA 2023-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    5. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Volatility-reducing biodiversity conservation under strategic interactions," Ecological Economics, Elsevier, vol. 190(C).
    6. Zamora-Pereira, Juan Carlos & Hanewinkel, Marc & Yousefpour, Rasoul, 2023. "Robust management strategies promoting ecological resilience and economic efficiency of a mixed conifer-broadleaf forest in Southwest Germany under the risk of severe drought," Ecological Economics, Elsevier, vol. 209(C).
    7. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    8. Friedrich, Stefan & Paul, Carola & Brandl, Susanne & Biber, Peter & Messerer, Katharina & Knoke, Thomas, 2019. "Economic impact of growth effects in mixed stands of Norway spruce and European beech – A simulation based study," Forest Policy and Economics, Elsevier, vol. 104(C), pages 65-80.
    9. Härtl, Fabian & Knoke, Thomas, 2014. "The influence of the oil price on timber supply," Forest Policy and Economics, Elsevier, vol. 39(C), pages 32-42.
    10. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    11. Roessiger, Joerg & Griess, Verena C. & Härtl, Fabian & Clasen, Christian & Knoke, Thomas, 2013. "How economic performance of a stand increases due to decreased failure risk associated with the admixing of species," Ecological Modelling, Elsevier, vol. 255(C), pages 58-69.
    12. Fuchs, Jasper M. & v. Bodelschwingh, Hilmar & Lange, Alexander & Paul, Carola & Husmann, Kai, 2022. "Quantifying the consequences of disturbances on wood revenues with Impulse Response Functions," Forest Policy and Economics, Elsevier, vol. 140(C).
    13. Hahn, Thomas & Sioen, Giles B. & Gasparatos, Alexandros & Elmqvist, Thomas & Brondizio, Eduardo & Gómez-Baggethun, Erik & Folke, Carl & Setiawati, Martiwi Diah & Atmaja, Tri & Arini, Enggar Yustisi & , 2023. "Insurance value of biodiversity in the Anthropocene is the full resilience value," Ecological Economics, Elsevier, vol. 208(C).
    14. Villamayor-Tomas, Sergio & Sagebiel, Julian & Rommel, Jens & Olschewski, Roland, 2021. "Types of collective action problems and farmers’ willingness to accept agri-environmental schemes in Switzerland," Ecosystem Services, Elsevier, vol. 50(C).
    15. Unterberger, Christian & Olschewski, Roland, 2021. "Determining the insurance value of ecosystems: A discrete choice study on natural hazard protection by forests," Ecological Economics, Elsevier, vol. 180(C).
    16. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    17. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).
    18. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    19. Thiele, Jan C. & Nuske, Robert S. & Ahrends, Bernd & Panferov, Oleg & Albert, Matthias & Staupendahl, Kai & Junghans, Udo & Jansen, Martin & Saborowski, Joachim, 2017. "Climate change impact assessment—A simulation experiment with Norway spruce for a forest district in Central Europe," Ecological Modelling, Elsevier, vol. 346(C), pages 30-47.
    20. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:84:y:2023:i:2:d:10.1007_s10640-022-00719-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.