IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v17y2011i2p214-229.html
   My bibliography  Save this article

Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

Author

Listed:
  • Buongiorno, Joseph
  • Raunikar, Ronald
  • Zhu, Shushuai

Abstract

The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country.

Suggested Citation

  • Buongiorno, Joseph & Raunikar, Ronald & Zhu, Shushuai, 2011. "Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 214-229, April.
  • Handle: RePEc:eee:foreco:v:17:y:2011:i:2:p:214-229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104-6899(11)00010-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brad Stennes & Kurt Niquidet & G. Cornelis van Kooten, 2009. "Implications of Expanding Bioenergy Production from Wood in British Columbia: An Application of a Regional Wood Fibre Allocation Model," Working Papers 2009-02, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    2. Sohngen, Brent & Mendelsohn, Robert, 1998. "Valuing the Impact of Large-Scale Ecological Change in a Market: The Effect of Climate Change on U.S. Timber," American Economic Review, American Economic Association, vol. 88(4), pages 686-710, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabuurs, Gert-Jan & Arets, Eric J.M.M. & Schelhaas, Mart-Jan, 2017. "European forests show no carbon debt, only a long parity effect," Forest Policy and Economics, Elsevier, vol. 75(C), pages 120-125.
    2. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barkaoui, Ahmed, 2013. "Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model," Energy Policy, Elsevier, vol. 63(C), pages 338-347.
    3. Olivia Cintas & Göran Berndes & Annette L. Cowie & Gustaf Egnell & Hampus Holmström & Göran I. Ågren, 2016. "The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 351-369, May.
    4. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2016. "Global trade impacts of increasing Europe's bioenergy demand," Journal of Forest Economics, Elsevier, vol. 23(C), pages 27-44.
    5. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    6. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    7. Kim, Sei Jin & Baker, Justin S. & Sohngen, Brent L. & Shell, Michael, 2018. "Cumulative global forest carbon implications of regional bioenergy expansion policies," Resource and Energy Economics, Elsevier, vol. 53(C), pages 198-219.
    8. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    9. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    10. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Vegh, Tibor, 2015. "The environmental and economic effects of regional bioenergy policy in the southeastern U.S," Energy Policy, Elsevier, vol. 85(C), pages 335-346.
    11. Latta, Gregory S. & Baker, Justin S. & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013. "A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion," Journal of Forest Economics, Elsevier, vol. 19(4), pages 361-383.
    12. G. Cornelis van Kooten, 2016. "California Dreaming: The Economics of Renewable Energy," Working Papers 2016-05, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    13. Schwarzbauer, Peter & Weinfurter, Stefan & Stern, Tobias & Koch, Sebastian, 2013. "Economic crises: Impacts on the forest-based sector and wood-based energy use in Austria," Forest Policy and Economics, Elsevier, vol. 27(C), pages 13-22.
    14. Sergent, Arnaud, 2014. "Sector-based political analysis of energy transition: Green shift in the forest policy regime in France," Energy Policy, Elsevier, vol. 73(C), pages 491-500.
    15. Alsaleh, Mohd & Abdul-Rahim, A.S. & Mohd-Shahwahid, H.O., 2017. "An empirical and forecasting analysis of the bioenergy market in the EU28 region: Evidence from a panel data simultaneous equation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1123-1137.
    16. Guo, Jinggang & Gong, Peichen, 2019. "Assessing the impacts of rising fuelwood demand on Swedish forest sector: An intertemporal optimization approach," Forest Policy and Economics, Elsevier, vol. 105(C), pages 91-98.
    17. Favero, Alice & Mendelsohn, Robert, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Climate Change and Sustainable Development 148929, Fondazione Eni Enrico Mattei (FEEM).
    18. Matzenberger, Julian & Kranzl, Lukas & Tromborg, Eric & Junginger, Martin & Daioglou, Vassilis & Sheng Goh, Chun & Keramidas, Kimon, 2015. "Future perspectives of international bioenergy trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 926-941.
    19. Spinelli, Raffaele & Magagnotti, Natascia & Jessup, Eric & Soucy, Michel, 2017. "Perspectives and challenges of logging enterprises in the Italian Alps," Forest Policy and Economics, Elsevier, vol. 80(C), pages 44-51.
    20. Johnston, Craig M.T. & Cornelis van Kooten, G., 2015. "Back to the past: Burning wood to save the globe," Ecological Economics, Elsevier, vol. 120(C), pages 185-193.
    21. Susaeta, Andres & Adams, Damian C. & Gonzalez-Benecke, Carlos, 2017. "Economic vulnerability of southern US slash pine forests to climate change," Journal of Forest Economics, Elsevier, vol. 28(C), pages 18-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:17:y:2011:i:2:p:214-229. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.