IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v9y2012i2p58-62.html
   My bibliography  Save this article

Discrete versus continuous time models: Local martingales and singular processes in asset pricing theory

Author

Listed:
  • Jarrow, Robert
  • Protter, Philip

Abstract

In economic theory, both discrete and continuous time models are commonly believed to be equivalent in the sense that one can always be used to approximate the other, or equivalently, any phenomena present in one is also present in the other. This common belief is misguided. Both (strict) local martingales and singular processes exist in continuous time, but not in discrete time models. More importantly, their existence reflects real economic phenomena related to arbitrage opportunities, large traders, asset price bubbles, and market efficiency. And as an approximation to trading opportunities in real markets, continuous trading provides a better fit and should be the preferred modeling approach for asset pricing theory.

Suggested Citation

  • Jarrow, Robert & Protter, Philip, 2012. "Discrete versus continuous time models: Local martingales and singular processes in asset pricing theory," Finance Research Letters, Elsevier, vol. 9(2), pages 58-62.
  • Handle: RePEc:eee:finlet:v:9:y:2012:i:2:p:58-62 DOI: 10.1016/j.frl.2012.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612312000177
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pal, Soumik & Protter, Philip, 2010. "Analysis of continuous strict local martingales via h-transforms," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1424-1443, August.
    2. Daniel Fernholz & Ioannis Karatzas, 2010. "On optimal arbitrage," Papers 1010.4987, arXiv.org.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. Robert Jarrow & Younes Kchia & Philip Protter, 2011. "Is there a bubble in LinkedIn's stock price?," Papers 1105.5717, arXiv.org.
    7. Mitchel Y. Abolafia (ed.), 2005. "Markets," Books, Edward Elgar Publishing, number 2788, April.
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    9. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    10. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    11. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    12. Peter P. Carr & Robert A. Jarrow, 2008. "The Stop-Loss Start-Gain Paradox and Option Valuation: A new Decomposition into Intrinsic and Time Value," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 4, pages 61-84 World Scientific Publishing Co. Pte. Ltd..
    13. Soumik Pal & Philip Protter, 2007. "Analysis of continuous strict local martingales via h-transforms," Papers 0711.1136, arXiv.org, revised Jun 2010.
    14. Yuri Kabanov, 2008. "In discrete time a local martingale is a martingale under an equivalent probability measure," Finance and Stochastics, Springer, vol. 12(3), pages 293-297, July.
    15. Jarrow, Robert & Protter, Philip, 2005. "Large traders, hidden arbitrage, and complete markets," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2803-2820, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander M. G. Cox & Zhaoxu Hou & Jan Obloj, 2014. "Robust pricing and hedging under trading restrictions and the emergence of local martingale models," Papers 1406.0551, arXiv.org, revised Jun 2015.
    2. Alexander M. G. Cox & Zhaoxu Hou & Jan Obłój, 2016. "Robust pricing and hedging under trading restrictions and the emergence of local martingale models," Finance and Stochastics, Springer, vol. 20(3), pages 669-704, July.

    More about this item

    Keywords

    Local martingales; Singular processes; Arbitrage opportunities; Large traders; Asset price bubbles; Market efficiency;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:9:y:2012:i:2:p:58-62. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/frl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.