IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v78y2025ics1544612325003897.html
   My bibliography  Save this article

Can AI beat a naive portfolio? An experiment with anonymized data

Author

Listed:
  • Perlin, Marcelo S.
  • Foguesatto, Cristian R.
  • Müller, Fernanda M.
  • Righi, Marcelo B.

Abstract

Using anonymized data from the United States (U.S.) market, we evaluate the performance of Google’s main LLM (Large Language Model) Gemini 1.5 Flash in making investment decisions. Unlike other studies, we query the LLM for different investment horizons (1 to 36 months) and types of financial information (financial data, price data, and a combination of both). Running a total of 30,000 simulations for 1,522 companies over 20 years of data, we find that Gemini does not consistently outperform a naive portfolio and the S&P 500 index in terms of returns and Sharpe ratios. Additionally, our findings indicate a decline in risk adjusted investment performance as the investment horizon extends.

Suggested Citation

  • Perlin, Marcelo S. & Foguesatto, Cristian R. & Müller, Fernanda M. & Righi, Marcelo B., 2025. "Can AI beat a naive portfolio? An experiment with anonymized data," Finance Research Letters, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:finlet:v:78:y:2025:i:c:s1544612325003897
    DOI: 10.1016/j.frl.2025.107126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325003897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.107126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    LLM; Regenerative AI; Artificial intelligence; Gemini; Investments; ChatGPT; Large language models;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:78:y:2025:i:c:s1544612325003897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.