IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i1d10.1007_s10479-024-06293-x.html
   My bibliography  Save this article

Enhancing mean–variance portfolio optimization through GANs-based anomaly detection

Author

Listed:
  • Jang Ho Kim

    (Korea University)

  • Seyoung Kim

    (Ulsan National Institute of Science and Technology (UNIST))

  • Yongjae Lee

    (Ulsan National Institute of Science and Technology (UNIST)
    Ulsan National Institute of Science and Technology (UNIST))

  • Woo Chang Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Frank J. Fabozzi

    (Johns Hopkins University, Hopkins Carey Business School)

Abstract

Mean–variance optimization, introduced by Markowitz, is a foundational theory and methodology in finance and optimization, significantly influencing investment management practices. This study enhances mean–variance optimization by integrating machine learning-based anomaly detection, specifically using GANs (generative adversarial networks), to identify anomaly levels in the stock market. We demonstrate the utility of GANs in detecting market anomalies and incorporating this information into portfolio optimization using robust methods such as shrinkage estimators and the Gerber statistic. Empirical analysis confirms that portfolios optimized with anomaly scores outperform those using conventional portfolio optimization. This study highlights the potential of advanced data-driven techniques to improve risk management and portfolio performance.

Suggested Citation

  • Jang Ho Kim & Seyoung Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2025. "Enhancing mean–variance portfolio optimization through GANs-based anomaly detection," Annals of Operations Research, Springer, vol. 346(1), pages 217-244, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06293-x
    DOI: 10.1007/s10479-024-06293-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06293-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06293-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    3. Oleksandr Romanko & Akhilesh Narayan & Roy H. Kwon, 2023. "ChatGPT-Based Investment Portfolio Selection," SN Operations Research Forum, Springer, vol. 4(4), pages 1-27, December.
    4. Das, Sanjiv & Markowitz, Harry & Scheid, Jonathan & Statman, Meir, 2010. "Portfolio Optimization with Mental Accounts," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 311-334, April.
    5. Guerard, John B. & Markowitz, Harry & Xu, GanLin, 2015. "Earnings forecasting in a global stock selection model and efficient portfolio construction and management," International Journal of Forecasting, Elsevier, vol. 31(2), pages 550-560.
    6. Harry M. Markowitz, 1999. "The Early History of Portfolio Theory: 1600–1960," Financial Analysts Journal, Taylor & Francis Journals, vol. 55(4), pages 5-16, July.
    7. Mikhail Beketov & Kevin Lehmann & Manuel Wittke, 2018. "Robo Advisors: quantitative methods inside the robots," Journal of Asset Management, Palgrave Macmillan, vol. 19(6), pages 363-370, October.
    8. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    9. Milena Vuletić & Felix Prenzel & Mihai Cucuringu, 2024. "Fin-GAN: forecasting and classifying financial time series via generative adversarial networks," Quantitative Finance, Taylor & Francis Journals, vol. 24(2), pages 175-199, January.
    10. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    11. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    12. Jang Ho Kim & Woo Chang Kim & Do-Gyun Kwon & Frank J. Fabozzi, 2018. "Robust equity portfolio performance," Annals of Operations Research, Springer, vol. 266(1), pages 293-312, July.
    13. Lasse Heje Pedersen & Abhilash Babu & Ari Levine, 2021. "Enhanced Portfolio Optimization," Financial Analysts Journal, Taylor & Francis Journals, vol. 77(2), pages 124-151, April.
    14. Giorgio Costa & Garud N. Iyengar, 2023. "Distributionally robust end-to-end portfolio construction," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1465-1482, October.
    15. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    16. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    17. Munki Chung & Yongjae Lee & Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2022. "The effects of errors in means, variances, and correlations on the mean-variance framework," Quantitative Finance, Taylor & Francis Journals, vol. 22(10), pages 1893-1903, October.
    18. C. Yin & R. Perchet & F. Soupé, 2021. "A practical guide to robust portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 21(6), pages 911-928, June.
    19. Oleksandr Romanko & Akhilesh Narayan & Roy H. Kwon, 2023. "ChatGPT-based Investment Portfolio Selection," Papers 2308.06260, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-David Fermanian & Benjamin Poignard & Panos Xidonas, 2025. "Model-based vs. agnostic methods for the prediction of time-varying covariance matrices," Annals of Operations Research, Springer, vol. 346(1), pages 511-548, March.
    2. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    3. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    4. Mynbayeva, Elmira & Lamb, John D. & Zhao, Yuan, 2022. "Why estimation alone causes Markowitz portfolio selection to fail and what we might do about it," European Journal of Operational Research, Elsevier, vol. 301(2), pages 694-707.
    5. Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
    6. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    7. Yanyu Guo & Zhicheng Zhang & Jizu Li & Huayun Du, 2024. "Research on Identification and Correction of Fund Investment Style Drift Based on FSD Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2605-2640, November.
    8. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    9. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    10. Antonios Georgantas & Michalis Doumpos & Constantin Zopounidis, 2024. "Robust optimization approaches for portfolio selection: a comparative analysis," Annals of Operations Research, Springer, vol. 339(3), pages 1205-1221, August.
    11. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    12. John Guerard, 2025. "Investments: the (almost) century of Markowitz Harry Markowitz: portfolio selection scholar, simulation creator, and applied investment researcher and consultant extraordinaire," Annals of Operations Research, Springer, vol. 346(1), pages 1-8, March.
    13. Jingnan Chen & Gengling Dai & Ning Zhang, 2020. "An application of sparse-group lasso regularization to equity portfolio optimization and sector selection," Annals of Operations Research, Springer, vol. 284(1), pages 243-262, January.
    14. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    15. Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020. "Artificial intelligence in asset management," Working Papers 20202001, Cambridge Judge Business School, University of Cambridge.
    16. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    17. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    18. Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
    19. Armin Varmaz & Christian Fieberg & Thorsten Poddig, 2024. "Portfolio optimization for sustainable investments," Annals of Operations Research, Springer, vol. 341(2), pages 1151-1176, October.
    20. Philippe J S De Brouwer, 2012. "Target-oriented investment advice," Journal of Asset Management, Palgrave Macmillan, vol. 13(2), pages 102-114, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06293-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.