IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v96y2016icp335-345.html
   My bibliography  Save this article

Mitigating crystallization of saturated fames in biodiesel: 1. Lowering crystallization temperatures via addition of metathesized soybean oil

Author

Listed:
  • Mohanan, Athira
  • Bouzidi, Laziz
  • Li, Shaojun
  • Narine, Suresh S.

Abstract

The addition of self-MSBO (metathesized soybean oil) to biodiesel significantly depresses the onset temperature of crystallization (Ton). MSBO and self-MTO (metathesized triolein), used as model systems, were separated into their constituent “molecular families” using column chromatography and crystallization fractionation and tested as crystallization modifiers of biodiesel. The results indicate that cis-unsaturation combined with a straight chain moiety is a critical structural architecture for disrupting biodiesel crystallization. The data obtained with TAGs (triacylglycerols) propose that the most effective stereospecificity is when the two fatty acids in the cis-configuration are in the sn-1 and sn-3 positions and a trans-/saturated fatty acid is at the sn-2 position. The conversion of cis-double bonds to trans-double bonds by self-metathesis explains the lowering of Ton of biodiesel. The fractionation of MSBO, leading to a liquid fraction enriched with molecules having cis-unsaturated fatty acids out-performed MSBO in lowering Ton of biodiesel. This knowledge can be used for the design of economical and more functional materials from MSBO and other metathesized vegetable oils using selective and practical fractionation methods. The findings of the study suggest that the use of biodiesel with significant saturated methyl ester content can be extended in colder months of the year.

Suggested Citation

  • Mohanan, Athira & Bouzidi, Laziz & Li, Shaojun & Narine, Suresh S., 2016. "Mitigating crystallization of saturated fames in biodiesel: 1. Lowering crystallization temperatures via addition of metathesized soybean oil," Energy, Elsevier, vol. 96(C), pages 335-345.
  • Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:335-345
    DOI: 10.1016/j.energy.2015.12.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215017387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    2. Smith, Paul C. & Ngothai, Yung & Dzuy Nguyen, Q. & O'Neill, Brian K., 2010. "Improving the low-temperature properties of biodiesel: Methods and consequences," Renewable Energy, Elsevier, vol. 35(6), pages 1145-1151.
    3. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    4. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    5. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    6. Cao, Leichang & Wang, Jieni & Liu, Kuojin & Han, Sheng, 2014. "Ethyl acetoacetate: A potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil," Applied Energy, Elsevier, vol. 114(C), pages 18-21.
    7. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    8. Makarevičienė, Violeta & Kazancev, Kiril & Kazanceva, Irina, 2015. "Possibilities for improving the cold flow properties of biodiesel fuel by blending with butanol," Renewable Energy, Elsevier, vol. 75(C), pages 805-807.
    9. Obed M. Ali & Talal Yusaf & Rizalman Mamat & Nik R. Abdullah & Abdul Adam Abdullah, 2014. "Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics," Energies, MDPI, vol. 7(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaokang & Li, Nana & Wei, Zhong & Han, Sheng & Dai, Bin & Lin, Hualin, 2022. "Synthesis of nano-hybrid polymethacrylate-carbon dots as pour point depressant and combined with ethylene-vinyl acetate resin to improve the cold flow properties of diesel fuels," Energy, Elsevier, vol. 253(C).
    2. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    3. Stefan Ptak & Wojciech Krasodomski & Magdalena Żółty, 2022. "Improvement in Low-Temperature Properties of Fatty Acid Methyl Esters," Energies, MDPI, vol. 15(13), pages 1-12, June.
    4. Lawan, Ibrahim & Zhou, Weiming & Garba, Zaharaddeen Nasiru & Zhang, Mingxin & Yuan, Zhanhui & Chen, Lihui, 2019. "Critical insights into the effects of bio-based additives on biodiesels properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 83-95.
    5. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2017. "Harnessing the synergies between lipid-based crystallization modifiers and a polymer pour point depressant to improve pour point of biodiesel," Energy, Elsevier, vol. 120(C), pages 895-906.
    6. Cui, Lulu & Li, Xin & Ren, Feihe & Lin, Hualin & Han, Sheng, 2024. "A novel pour point depressant with diesel cold-flow properties: Performance evaluation of benzene-containing ternary copolymers," Energy, Elsevier, vol. 288(C).
    7. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2016. "Mitigating crystallization of saturated FAMEs in biodiesel 6: The binary phase behavior of 1, 2-dioleoyl-3-stearoyl sn-glycerol – Methyl stearate," Energy, Elsevier, vol. 100(C), pages 273-284.
    8. Jiang, Zhengwei & Gan, Yunhua & Ju, Yiguang & Liang, Jialin & Zhou, Yi, 2019. "Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor," Energy, Elsevier, vol. 179(C), pages 843-849.
    9. Ni, Zihao & Zhai, Yuling & Li, Fashe & Wang, Hua & Yang, Kai & Wang, Bican & Chen, Yu, 2020. "Reaction kinetics analysis of branched-chain alkyl esters of palmitic acid and cold flow properties," Renewable Energy, Elsevier, vol. 147(P1), pages 719-729.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2016. "Mitigating crystallization of saturated FAMEs in biodiesel 6: The binary phase behavior of 1, 2-dioleoyl-3-stearoyl sn-glycerol – Methyl stearate," Energy, Elsevier, vol. 100(C), pages 273-284.
    2. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    3. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    5. Mohanan, Athira & Darling, Bruce & Bouzidi, Laziz & Narine, Suresh S., 2015. "Mitigating crystallization of saturated FAMES (fatty acid methyl esters) in biodiesel. 3. The binary phase behavior of 1,3-dioleoyl-2-palmitoyl glycerol – Methyl palmitate – A multi-length scale struc," Energy, Elsevier, vol. 86(C), pages 500-513.
    6. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    7. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    8. Suh, Hyun Kyu & Lee, Chang Sik, 2016. "A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1601-1620.
    9. Sáez-Bastante, J. & Carmona-Cabello, M. & Pinzi, S. & Dorado, M.P., 2020. "Recycling of kebab restoration grease for bioenergy production through acoustic cavitation," Renewable Energy, Elsevier, vol. 155(C), pages 1147-1155.
    10. Rocabruno-Valdés, C.I. & González-Rodriguez, J.G. & Díaz-Blanco, Y. & Juantorena, A.U. & Muñoz-Ledo, J.A. & El-Hamzaoui, Y. & Hernández, J.A., 2019. "Corrosion rate prediction for metals in biodiesel using artificial neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 592-601.
    11. M. Shahabuddin & M. Mofijur & Md. Bengir Ahmed Shuvho & M. A. K. Chowdhury & M. A. Kalam & H. H. Masjuki & M. A. Chowdhury, 2021. "A Study on the Corrosion Characteristics of Internal Combustion Engine Materials in Second-Generation Jatropha Curcas Biodiesel," Energies, MDPI, vol. 14(14), pages 1-15, July.
    12. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    13. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    14. Mohanan, Athira & Bouzidi, Laziz & Li, Shaojun & Narine, Suresh S., 2015. "Mitigating crystallization of saturated FAMES in biodiesel: 5. The unusual phase behavior of a structured triacylglycerol dimer and methyl palmitate binary system," Energy, Elsevier, vol. 93(P1), pages 1011-1021.
    15. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    16. Kodgire, Pravin & Sharma, Anvita & Kachhwaha, Surendra Singh, 2023. "Optimization and kinetics of biodiesel production of Ricinus communis oil and used cottonseed cooking oil employing synchronised ‘ultrasound + microwave’ and heterogeneous CaO catalyst," Renewable Energy, Elsevier, vol. 212(C), pages 320-332.
    17. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    18. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    19. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    20. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2017. "Harnessing the synergies between lipid-based crystallization modifiers and a polymer pour point depressant to improve pour point of biodiesel," Energy, Elsevier, vol. 120(C), pages 895-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:96:y:2016:i:c:p:335-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.