Introducing the Temporal Distortion Index to perform a bidimensional analysis of renewable energy forecast
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.10.093
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
- Azcárate, Cristina & Blanco, Rosa & Mallor, Fermín & Garde, Raquel & Aguado, Mónica, 2012. "Peaking strategies for the management of wind-H2 energy systems," Renewable Energy, Elsevier, vol. 47(C), pages 103-111.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Azcárate, Cristina & Mallor, Fermín & Mateo, Pedro, 2017. "Tactical and operational management of wind energy systems with storage using a probabilistic forecast of the energy resource," Renewable Energy, Elsevier, vol. 102(PB), pages 445-456.
- Benjamin Patrick Evans & Kirill Glavatskiy & Michael S. Harré & Mikhail Prokopenko, 2023. "The impact of social influence in Australian real estate: market forecasting with a spatial agent-based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(1), pages 5-57, January.
- Wessam El-Baz & Lukas Mayerhofer & Peter Tzscheutschler & Ulrich Wagner, 2018. "Hardware in the Loop Real-Time Simulation for Heating Systems: Model Validation and Dynamics Analysis," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Takahiro Takamatsu & Hideaki Ohtake & Takashi Oozeki, 2022. "Support Vector Quantile Regression for the Post-Processing of Meso-Scale Ensemble Prediction System Data in the Kanto Region: Solar Power Forecast Reducing Overestimation," Energies, MDPI, vol. 15(4), pages 1-18, February.
- Paletta, Quentin & Hu, Anthony & Arbod, Guillaume & Lasenby, Joan, 2022. "ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy," Applied Energy, Elsevier, vol. 326(C).
- Huang, Jing & Qin, Rui, 2024. "Elman neural network considering dynamic time delay estimation for short-term forecasting of offshore wind power," Applied Energy, Elsevier, vol. 358(C).
- Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Gallardo-Calles, Jose-Maria & Colmenar-Santos, Antonio & Ontañon-Ruiz, Javier & Castro-Gil, Manuel, 2013. "Wind control centres: State of the art," Renewable Energy, Elsevier, vol. 51(C), pages 93-100.
- Marta Poncela-Blanco & Pilar Poncela, 2021. "Improving Wind Power Forecasts: Combination through Multivariate Dimension Reduction Techniques," Energies, MDPI, vol. 14(5), pages 1-16, March.
- Dong, Qingli & Sun, Yuhuan & Li, Peizhi, 2017. "A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China," Renewable Energy, Elsevier, vol. 102(PA), pages 241-257.
- Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
- Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
- Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- LM López-Manrique & EV Macias-Melo & KM Aguilar-Castro & I Hernández-Pérez & HP DÃaz-Hernández, 2021. "Review on methodological and normative advances in assessment and estimation of wind energy," Energy & Environment, , vol. 32(1), pages 25-61, February.
- Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025.
"Bayesian neural networks for macroeconomic analysis,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
- Hauzenberger , Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2024. "Bayesian Neural Networks for Macroeconomic Analysis," CEPR Discussion Papers 19381, C.E.P.R. Discussion Papers.
- Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017.
"Autocorrelation in an unobservable global trend: does it help to forecast market returns?,"
International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
- Peresetsky, Anatoly & Yakubov, Ruslan, 2015. "Autocorrelation in an unobservable global trend: Does it help to forecast market returns?," MPRA Paper 64579, University Library of Munich, Germany.
- Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
- Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
- Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012.
"Are Some Forecasters Really Better Than Others?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
- Antonello D’agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
- Antonello D'Agostino & Kieran McQuinn & Karl Whelan, 2010. "Are some forecasters really better than others?," Working Papers 201012, School of Economics, University College Dublin.
- D'Agostino, Antonello & McQuinn, Kieran & Whelan, Karl, 2010. "Are Some Forecasters Really Better Than Others?," Research Technical Papers 5/RT/10, Central Bank of Ireland.
- D'Agostino, Antonello & McQuinn, Kieran & Whelan, Karl, 2011. "Are some forecasters really better than others?," MPRA Paper 32938, University Library of Munich, Germany.
- Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
- Carlo Altavilla & Paul De Grauwe, 2010.
"Forecasting and combining competing models of exchange rate determination,"
Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
- Carlo Altavilla & Paul De Grauwe, 2006. "Forecasting and Combining Competing Models of Exchange rate Determination," Discussion Papers 5_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Carlo Altavilla & Paul De Grauwe, 2006. "Forecasting and Combining Competing Models of Exchange Rate Determination," CESifo Working Paper Series 1747, CESifo.
- Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
- Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022.
"Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models,"
Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
- Gabriel Montes Rojas & Luciano De Castro & Antonio Galvao & José Olmo & Kim Jeong Yeol, 2021. "Experiments on Portfolio Selection: A comparison between quantile preferences and expected utility decision models," Asociación Argentina de Economía Política: Working Papers 4494, Asociación Argentina de Economía Política.
- Gabriel Montes-Rojas & Luciano de Castro & Antonio F. Galvao & Jeong Yeol Kim & José Olmo, 2021. "Experiments on portfolio selection: a comparison between quantile preferences and expected utility decision models," Documentos de trabajo del Instituto Interdisciplinario de Economía Política IIEP (UBA-CONICET) 2021-68, Universidad de Buenos Aires, Facultad de Ciencias Económicas, Instituto Interdisciplinario de Economía Política IIEP (UBA-CONICET).
- Tom Boot & Bart Keijsers, 2025. "Diffusion index forecasts under weaker loadings: PCA, ridge regression, and random projections," Papers 2506.09575, arXiv.org.
- Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:180-194. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/energy/v94y2016icp180-194.html