IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p2006-2015.html
   My bibliography  Save this article

Methane enrichment of syngas (H2/CO) in a spark-ignition direct-injection engine: Combustion, performance and emissions comparison with syngas and Compressed Natural Gas

Author

Listed:
  • Hagos, Ftwi Yohaness
  • A. Aziz, A. Rashid
  • Sulaiman, Shaharin A.

Abstract

Syngas produced from gasification of solid fuels can serve best as transition fuel from the carbon-based to the hydrogen-based fuels in the internal combustion engines. The lone drawback is its low calorific value being between one tenth and one fifth of that of CNG (Compressed Natural Gas). This results in higher BSFC (brake specific fuel consumption) and limitation on the injection duration at late injection timings in the DI (direct-injection) SI (spark-ignition) engine. Recently, there have been efforts to enrich the syngas with methane so that the calorific value can be improved. This paper presents experimental results on the effect of methane-enrichment of syngas on the combustion, performance and emissions in the DISI engine. The result shows that the MES (methane-enriched syngas) has extended the operation excess air ratio (λ) compared to syngas and CNG at the same engine speed. Methane-enrichment has maintained the faster and smoother combustion, the lower brake emissions of carbon monoxide and total hydrocarbon, and higher brake emissions of nitrogen oxides observed with syngas. Besides, MES improved the maximum brake thermal efficiency and the BSFC of the syngas by 30.2% and 21.3%, respectively. Therefore, MES can be better replacement to CNG in the DISI engine at all load conditions.

Suggested Citation

  • Hagos, Ftwi Yohaness & A. Aziz, A. Rashid & Sulaiman, Shaharin A., 2015. "Methane enrichment of syngas (H2/CO) in a spark-ignition direct-injection engine: Combustion, performance and emissions comparison with syngas and Compressed Natural Gas," Energy, Elsevier, vol. 90(P2), pages 2006-2015.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:2006-2015
    DOI: 10.1016/j.energy.2015.07.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, C.D. & Michos, C.N. & Giakoumis, E.G., 2008. "Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model," Energy, Elsevier, vol. 33(9), pages 1378-1398.
    2. Göransson, Kristina & Söderlind, Ulf & He, Jie & Zhang, Wennan, 2011. "Review of syngas production via biomass DFBGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 482-492, January.
    3. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    4. Huang, Zhen & He, Fang & Zheng, Anqing & Zhao, Kun & Chang, Sheng & Zhao, Zengli & Li, Haibin, 2013. "Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier," Energy, Elsevier, vol. 53(C), pages 244-251.
    5. Ando, Y. & Yoshikawa, K. & Beck, M. & Endo, H., 2005. "Research and development of a low-BTU gas-driven engine for waste gasification and power generation," Energy, Elsevier, vol. 30(11), pages 2206-2218.
    6. Atnaw, Samson Mekbib & Sulaiman, Shaharin Anwar & Yusup, Suzana, 2013. "Syngas production from downdraft gasification of oil palm fronds," Energy, Elsevier, vol. 61(C), pages 491-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Paykani, 2021. "Comparative Study on Chemical Kinetics Mechanisms for Methane-Based Fuel Mixtures under Engine-Relevant Conditions," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    3. Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
    4. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    5. Abd Rashid Abd Aziz & Yohannes Tamirat Anbese & Ftwi Yohaness Hagos & Morgan R. Heikal & Firmansyah, 2017. "Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve," Energies, MDPI, vol. 10(7), pages 1-16, July.
    6. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    7. Kan, Xiang & Zhou, Dezhi & Yang, Wenming & Zhai, Xiaoqiang & Wang, Chi-Hwa, 2018. "An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 210-222.
    8. Ali Diané & Gounkaou Woro Yomi & Sidiki Zongo & Tizane Daho & Hervé Jeanmart, 2023. "Characterization, at Partial Loads, of the Combustion and Emissions of a Dual-Fuel Engine Burning Diesel and a Lean Gas Surrogate," Energies, MDPI, vol. 16(15), pages 1-16, July.
    9. Carlo Caligiuri & Urban Žvar Baškovič & Massimiliano Renzi & Tine Seljak & Samuel Rodman Oprešnik & Marco Baratieri & Tomaž Katrašnik, 2021. "Complementing Syngas with Natural Gas in Spark Ignition Engines for Power Production: Effects on Emissions and Combustion," Energies, MDPI, vol. 14(12), pages 1-18, June.
    10. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    11. Paykani, Amin & Frouzakis, Christos E. & Boulouchos, Konstantinos, 2019. "Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 242(C), pages 1712-1724.
    12. Gao, Yonggang & Liu, Yang & Dong, Zhichao & Ma, Dong & Yang, Bin & Qiu, Congcong, 2023. "Preliminary experimental study on combustion characteristics in a solid rocket motor nozzle based on the TDLAS system," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Moghadam, Reza Alipour & Yusup, Suzana & Uemura, Yoshimitsu & Chin, Bridgid Lai Fui & Lam, Hon Loong & Al Shoaibi, Ahmed, 2014. "Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process," Energy, Elsevier, vol. 75(C), pages 40-44.
    3. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    4. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    5. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    6. Neves, Daniel & Thunman, Henrik & Tarelho, Luís & Larsson, Anton & Seemann, Martin & Matos, Arlindo, 2014. "Method for online measurement of the CHON composition of raw gas from biomass gasifier," Applied Energy, Elsevier, vol. 113(C), pages 932-945.
    7. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    8. Pablo Emilio Escamilla-García & Ana Lilia Coria-Páez & Francisco Pérez-Soto & Francisco Gutiérrez-Galicia & Carolina Caire & Blanca L. Martínez-Vargas, 2023. "Financial and Technical Evaluation of Energy Production by Biological and Thermal Treatments of MSW in Mexico City," Energies, MDPI, vol. 16(9), pages 1-14, April.
    9. Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
    10. Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
    11. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    12. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    13. Lambert, Jerry & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2023. "Evaluation of sector-coupled energy systems using different foresight horizons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    15. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    16. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    17. Stempien, Jan Pawel & Sun, Qiang & Chan, Siew Hwa, 2013. "Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions," Energy, Elsevier, vol. 55(C), pages 647-657.
    18. Wang, Fang & Zeng, Xi & Sun, Yanlin & Zhang, Juwei & Zhao, Zhigang & Wang, Yonggang & Xu, Guangwen, 2015. "Jetting pre-oxidation fluidized bed gasification process for caking coal: Fundamentals and pilot test," Applied Energy, Elsevier, vol. 160(C), pages 80-87.
    19. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    20. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:2006-2015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.