IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp65-74.html
   My bibliography  Save this article

Electricity generation costs of concentrated solar power technologies in China based on operational plants

Author

Listed:
  • Zhu, Zhao
  • Zhang, Da
  • Mischke, Peggy
  • Zhang, Xiliang

Abstract

Recent years witnessed a sharp increase of CSP (concentrated solar power) plants around the world. CSP is currently at its early stage in China, with several demonstration and utility-scale plants underway. China's rising electricity demand, the severe environmental pollution from coal-fired power plants, and favorable renewable energy policies are expected to result in a large-scale CSP deployment in the next years. Detailed CSP studies for China are however hardly available. To fill this knowledge gap, this study collects plant-specific data in a national CSP database in collaboration with local CSP experts. On this basis, this study analyzes and benchmarks the costs of parabolic trough CSP, tower CSP, and dish CSP technologies in China by applying an LCOE (levelized cost of electricity) model. The current LCOE for the different CSP plants falls in a range of 1.2–2.7 RMB/kWh (0.19–0.43 US$/kWh). Among the three CSP technology variants discussed, our sensitivity analysis indicates that the tower CSP variant might have the greatest potential in China. We expect a future cost reduction potential of more than 50% in 2020 and a high share of local content manufacturing for tower CSP.

Suggested Citation

  • Zhu, Zhao & Zhang, Da & Mischke, Peggy & Zhang, Xiliang, 2015. "Electricity generation costs of concentrated solar power technologies in China based on operational plants," Energy, Elsevier, vol. 89(C), pages 65-74.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:65-74
    DOI: 10.1016/j.energy.2015.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Zhihao & Wang, Zhifeng & Lu, Zhenwu & Wei, Xiudong, 2009. "Modeling and simulation of the pioneer 1MW solar thermal central receiver system in China," Renewable Energy, Elsevier, vol. 34(11), pages 2437-2446.
    2. Hang, Qu & Jun, Zhao & Xiao, Yu & Junkui, Cui, 2008. "Prospect of concentrating solar power in China--the sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2505-2514, December.
    3. Janjai, S. & Laksanaboonsong, J. & Seesaard, T., 2011. "Potential application of concentrating solar power systems for the generation of electricity in Thailand," Applied Energy, Elsevier, vol. 88(12), pages 4960-4967.
    4. Zhang, Sufang & He, Yongxiu, 2013. "Analysis on the development and policy of solar PV power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 393-401.
    5. Chen, Wenying & Li, Hualin & Wu, Zongxin, 2010. "Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model," Energy Policy, Elsevier, vol. 38(11), pages 7106-7120, November.
    6. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
    7. Hinkley, James T. & Hayward, Jennifer A. & Curtin, Bryan & Wonhas, Alex & Boyd, Rod & Grima, Charles & Tadros, Amir & Hall, Ross & Naicker, Kevin, 2013. "An analysis of the costs and opportunities for concentrating solar power in Australia," Renewable Energy, Elsevier, vol. 57(C), pages 653-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
    2. Ndala Y. Mulongo & Pule A. Kholopane, 2018. "Cost Assessment: Electricity Generating Sources Against Energy Efficiency Measures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-28, March.
    3. Wang, P. & Li, J.B. & Zhao, L. & Ghahremannezhad, A. & Zhou, L., 2019. "Partially shaded heat collector element - A practical approach to performance improvement," Renewable Energy, Elsevier, vol. 133(C), pages 1078-1085.
    4. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    5. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    6. Fan, Jing-Li & Wei, Shijie & Yang, Lin & Wang, Hang & Zhong, Ping & Zhang, Xian, 2019. "Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: Evidence from China," Energy, Elsevier, vol. 176(C), pages 143-155.
    7. Alonso-Montesinos, J. & Monterreal, R. & Fernández-Reche, J. & Ballestrín, J. & Carra, E. & Polo, J. & Barbero, J. & Batlles, F.J. & López, G. & Enrique, R. & Martínez-Durbán, M. & Marzo, A., 2019. "Intra-hour energy potential forecasting in a central solar power plant receiver combining Meteosat images and atmospheric extinction," Energy, Elsevier, vol. 188(C).
    8. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    9. McPherson, Madeleine & Mehos, Mark & Denholm, Paul, 2020. "Leveraging concentrating solar power plant dispatchability: A review of the impacts of global market structures and policy," Energy Policy, Elsevier, vol. 139(C).
    10. Duan, Liqiang & Wang, Zhen & Guo, Yaofei, 2020. "Off-design performance characteristics study on ISCC system with solar direct steam generation system," Energy, Elsevier, vol. 205(C).
    11. Ephraim Bonah Agyekum & Tomiwa Sunday Adebayo & Festus Victor Bekun & Nallapaneni Manoj Kumar & Manoj Kumar Panjwani, 2021. "Effect of Two Different Heat Transfer Fluids on the Performance of Solar Tower CSP by Comparing Recompression Supercritical CO 2 and Rankine Power Cycles, China," Energies, MDPI, vol. 14(12), pages 1-19, June.
    12. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    13. Memon, Abdul Jabbar & Shaikh, Muhammad Mujtaba, 2016. "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques," Energy, Elsevier, vol. 109(C), pages 592-601.
    14. Elfeky, Karem Elsayed & Wang, Qiuwang, 2023. "Techno-environ-economic assessment of photovoltaic and CSP with storage systems in China and Egypt under various climatic conditions," Renewable Energy, Elsevier, vol. 215(C).
    15. Xiaoru Zhuang & Xinhai Xu & Wenrui Liu & Wenfu Xu, 2019. "LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China," Energies, MDPI, vol. 12(7), pages 1-17, April.
    16. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    17. Tang, Xu & Snowden, Simon & McLellan, Benjamin C. & Höök, Mikael, 2015. "Clean coal use in China: Challenges and policy implications," Energy Policy, Elsevier, vol. 87(C), pages 517-523.
    18. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
    19. Chen, Yingwen & Chen, Liuliu & Li, Peiwen & Xu, Yuan & Fan, Mengjie & Zhu, Shemin & Shen, Shubao, 2016. "Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes," Energy, Elsevier, vol. 109(C), pages 620-628.
    20. Irving Cruz-Robles & Jorge M. Islas-Samperio & Claudio A. Estrada, 2022. "Levelized Cost of Heat of the CSP th Hybrid Central Tower Technology," Energies, MDPI, vol. 15(22), pages 1-23, November.
    21. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    22. Vieira de Souza, Luiz Enrique & Gilmanova Cavalcante, Alina Mikhailovna, 2017. "Concentrated Solar Power deployment in emerging economies: The cases of China and Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1094-1103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    2. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
    3. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    4. Meybodi, Mehdi Aghaei & Beath, Andrew C., 2016. "Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study," Renewable Energy, Elsevier, vol. 93(C), pages 510-524.
    5. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    6. Meybodi, Mehdi Aghaei & Ramirez Santigosa, Lourdes & Beath, Andrew C., 2017. "A study on the impact of time resolution in solar data on the performance modelling of CSP plants," Renewable Energy, Elsevier, vol. 109(C), pages 551-563.
    7. Xiaoru Zhuang & Xinhai Xu & Wenrui Liu & Wenfu Xu, 2019. "LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China," Energies, MDPI, vol. 12(7), pages 1-17, April.
    8. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    9. WenminQin, & Wang, Lunche & Gueymard, Christian A. & Bilal, Muhammad & Lin, Aiwen & Wei, Jing & Zhang, Ming & Yang, Xuefang, 2020. "Constructing a gridded direct normal irradiance dataset in China during 1981–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Gamil, Ahmed & Li, Peiwen & Ali, Babkir & Hamid, Mohamed Ali, 2022. "Concentrating solar thermal power generation in Sudan: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    12. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    13. Wang, Jun & Yang, Song & Jiang, Chuan & Yan, Qianwen & Lund, Peter D., 2017. "A novel 2-stage dish concentrator with improved optical performance for concentrating solar power plants," Renewable Energy, Elsevier, vol. 108(C), pages 92-97.
    14. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    15. Gandenberger, Carsten, 2018. "China's trajectory from production to innovation: Insights from the photovoltaics sector," Working Papers "Sustainability and Innovation" S03/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    16. Ming, Zeng & Lilin, Peng & Qiannan, Fan & Yingjie, Zhang, 2016. "Trans-regional electricity transmission in China: Status, issues and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 572-583.
    17. Wei, Xiudong & Lu, Zhenwu & Yu, Weixing & Zhang, Hongxin & Wang, Zhifeng, 2011. "Tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants," Renewable Energy, Elsevier, vol. 36(10), pages 2687-2693.
    18. Niknia, Iman & Yaghoubi, Mahmood, 2013. "Transient analysis of integrated Shiraz hybrid solar thermal power plant," Renewable Energy, Elsevier, vol. 49(C), pages 216-221.
    19. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    20. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:65-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.