IDEAS home Printed from
   My bibliography  Save this article

Self-scheduling for energy and spinning reserve of wind/CSP plants by a MILP approach


  • Pousinho, H.M.I.
  • Silva, H.
  • Mendes, V.M.F.
  • Collares-Pereira, M.
  • Pereira Cabrita, C.


This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor.

Suggested Citation

  • Pousinho, H.M.I. & Silva, H. & Mendes, V.M.F. & Collares-Pereira, M. & Pereira Cabrita, C., 2014. "Self-scheduling for energy and spinning reserve of wind/CSP plants by a MILP approach," Energy, Elsevier, vol. 78(C), pages 524-534.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:524-534
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Manenti, Flavio & Ravaghi-Ardebili, Zohreh, 2013. "Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage," Energy, Elsevier, vol. 55(C), pages 89-97.
    2. Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
    3. Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
    4. Becker, S. & Rodriguez, R.A. & Andresen, G.B. & Schramm, S. & Greiner, M., 2014. "Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply," Energy, Elsevier, vol. 64(C), pages 404-418.
    5. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    6. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.
    7. Gómez, Antonio & Zubizarreta, Javier & Dopazo, César & Fueyo, Norberto, 2011. "Spanish energy roadmap to 2020: Socioeconomic implications of renewable targets," Energy, Elsevier, vol. 36(4), pages 1973-1985.
    8. Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
    9. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    10. Purvins, Arturs & Papaioannou, Ioulia T. & Oleinikova, Irina & Tzimas, Evangelos, 2012. "Effects of variable renewable power on a country-scale electricity system: High penetration of hydro power plants and wind farms in electricity generation," Energy, Elsevier, vol. 43(1), pages 225-236.
    11. Varkani, Ali Karimi & Daraeepour, Ali & Monsef, Hassan, 2011. "A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets," Applied Energy, Elsevier, vol. 88(12), pages 5002-5012.
    12. Nykamp, Stefan & Molderink, Albert & Hurink, Johann L. & Smit, Gerald J.M., 2012. "Statistics for PV, wind and biomass generators and their impact on distribution grid planning," Energy, Elsevier, vol. 45(1), pages 924-932.
    13. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    14. Gutiérrez-Martín, F. & Da Silva-Álvarez, R.A. & Montoro-Pintado, P., 2013. "Effects of wind intermittency on reduction of CO2 emissions: The case of the Spanish power system," Energy, Elsevier, vol. 61(C), pages 108-117.
    15. Khosravi, Abbas & Nahavandi, Saeid & Creighton, Doug, 2013. "Quantifying uncertainties of neural network-based electricity price forecasts," Applied Energy, Elsevier, vol. 112(C), pages 120-129.
    16. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    17. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    18. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods," Energy, Elsevier, vol. 36(7), pages 3968-3978.
    19. Pereira, Adelino J.C. & Saraiva, João Tomé, 2013. "Long term impact of wind power generation in the Iberian day-ahead electricity market price," Energy, Elsevier, vol. 55(C), pages 1159-1171.
    20. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    21. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    22. Manzano-Agugliaro, F. & Alcayde, A. & Montoya, F.G. & Zapata-Sierra, A. & Gil, C., 2013. "Scientific production of renewable energies worldwide: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 134-143.
    23. Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shayesteh, E. & Amelin, M. & Soder, L., 2015. "Area equivalents for spinning reserve determination in interconnected power systems," Energy, Elsevier, vol. 88(C), pages 907-916.
    2. Goudarzi, Arman & Viray, Z.N.C. & Siano, Pierluigi & Swanson, Andrew G. & Coller, John V. & Kazemi, Mehdi, 2017. "A probabilistic determination of required reserve levels in an energy and reserve co-optimized electricity market with variable generation," Energy, Elsevier, vol. 130(C), pages 258-275.
    3. Moradi, Saeed & Khanmohammadi, Sohrab & Hagh, Mehrdad Tarafdar & Mohammadi-ivatloo, Behnam, 2015. "A semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem," Energy, Elsevier, vol. 88(C), pages 244-259.
    4. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    5. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    6. Cojocaru, Emilian Gelu & Bravo, José Manuel & Vasallo, Manuel Jesús & Santos, Diego Marín, 2019. "Optimal scheduling in concentrating solar power plants oriented to low generation cycling," Renewable Energy, Elsevier, vol. 135(C), pages 789-799.
    7. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Real time procurement of energy and operating reserve from Renewable Energy Sources in deregulated environment considering imbalance penalties," Renewable Energy, Elsevier, vol. 113(C), pages 855-866.
    8. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    9. Vasallo, Manuel Jesús & Bravo, José Manuel, 2016. "A MPC approach for optimal generation scheduling in CSP plants," Applied Energy, Elsevier, vol. 165(C), pages 357-370.
    10. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    11. Tan, Siah Hong & Barton, Paul I., 2015. "Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part I: Bakken shale play case study," Energy, Elsevier, vol. 93(P2), pages 1581-1594.
    12. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Market based procurement of energy and ancillary services from Renewable Energy Sources in deregulated environment," Renewable Energy, Elsevier, vol. 101(C), pages 1390-1400.
    13. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:524-534. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.