IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp844-851.html
   My bibliography  Save this article

Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland

Author

Listed:
  • Judl, Jáchym
  • Koskela, Sirkka
  • Korpela, Timo
  • Karvosenoja, Niko
  • Häyrinen, Anna
  • Rantsi, Jari

Abstract

The EU's energy sector depends heavily on fossil fuels, which contribute to climate change. This is why climate mitigation targets for energy production have been set, including an increased biomass use requirement. In Finland, biomass is commonly utilised but its capital, Helsinki, is still dependent on fossil fuels. With the ambition of becoming climate neutral by 2050, Helsinki is testing, inter alia, low-share wood pellet and coal co-combustion in a CHP (combined heat and power) plant.

Suggested Citation

  • Judl, Jáchym & Koskela, Sirkka & Korpela, Timo & Karvosenoja, Niko & Häyrinen, Anna & Rantsi, Jari, 2014. "Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland," Energy, Elsevier, vol. 77(C), pages 844-851.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:844-851
    DOI: 10.1016/j.energy.2014.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehrig, Rita & Behrendt, Frank, 2013. "Co-firing of imported wood pellets – An option to efficiently save CO2 emissions in Europe?," Energy Policy, Elsevier, vol. 59(C), pages 283-300.
    2. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    3. Michael Den Herder & Marja Kolström & Marcus Lindner & Tommi Suominen & Diana Tuomasjukka & Matias Pekkanen, 2012. "Sustainability Impact Assessment on the Production and Use of Different Wood and Fossil Fuels Employed for Energy Production in North Karelia, Finland," Energies, MDPI, vol. 5(11), pages 1-22, November.
    4. Lehtilä, A. & Savolainen, I. & Syri, S., 2005. "The role of technology development in greenhouse gas emissions reduction: The case of Finland," Energy, Elsevier, vol. 30(14), pages 2738-2758.
    5. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    6. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    7. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    8. Eriksson, Ola & Finnveden, Goran & Ekvall, Tomas & Bjorklund, Anna, 2007. "Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion," Energy Policy, Elsevier, vol. 35(2), pages 1346-1362, February.
    9. Monteiro, Eliseu & Mantha, Vishveshwar & Rouboa, Abel, 2012. "Portuguese pellets market: Analysis of the production and utilization constrains," Energy Policy, Elsevier, vol. 42(C), pages 129-135.
    10. McManus, M.C., 2010. "Life cycle impacts of waste wood biomass heating systems: A case study of three UK based systems," Energy, Elsevier, vol. 35(10), pages 4064-4070.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    2. Proskurina, Svetlana & Alakangas, Eija & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2017. "A survey analysis of the wood pellet industry in Finland: Future perspectives," Energy, Elsevier, vol. 118(C), pages 692-704.
    3. Antti Teräsvirta & Sanna Syri & Pauli Hiltunen, 2020. "Small Nuclear Reactor—Nordic District Heating Case Study," Energies, MDPI, vol. 13(15), pages 1-16, July.
    4. Martín-Gamboa, Mario & Marques, Pedro & Freire, Fausto & Arroja, Luís & Dias, Ana Cláudia, 2020. "Life cycle assessment of biomass pellets: A review of methodological choices and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Yingying Zheng & Chang Liu & Jie Zhu & Yuanrui Sang & Jinglong Wang & Wenjing Zhao & Minghao Zhuang, 2022. "Carbon Footprint Analysis for Biomass-Fueled Combined Heat and Power Station: A Case Study," Agriculture, MDPI, vol. 12(8), pages 1-10, August.
    6. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
    7. Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
    8. Jiayu Wei & Can Yao & Changdong Sheng, 2023. "Modelling Self-Heating and Self-Ignition Processes during Biomass Storage," Energies, MDPI, vol. 16(10), pages 1-17, May.
    9. Alessandra Fusi & Jacopo Bacenetti & Andrea R. Proto & Doriana E. A. Tedesco & Domenico Pessina & Davide Facchinetti, 2020. "Pellet Production from Miscanthus: Energy and Environmental Assessment," Energies, MDPI, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    2. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    5. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    6. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    7. Brand, Martha Andreia & Jacinto, Rodolfo Cardoso, 2020. "Apple pruning residues: Potential for burning in boiler systems and pellet production," Renewable Energy, Elsevier, vol. 152(C), pages 458-466.
    8. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    9. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    10. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    11. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    12. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    13. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    14. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    15. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
    17. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    18. Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, Michael E., 2015. "Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis," Energy Policy, Elsevier, vol. 81(C), pages 106-116.
    19. Francesco Neirotti & Michel Noussan & Marco Simonetti, 2020. "Evaluating the Emissions of the Heat Supplied by District Heating Networks through A Life Cycle Perspective," Clean Technol., MDPI, vol. 2(4), pages 1-14, October.
    20. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:844-851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.