IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp651-657.html
   My bibliography  Save this article

Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices

Author

Listed:
  • Taghavifar, Hamid
  • Mardani, Aref

Abstract

This paper examines the prediction of energy efficiency indices of driven wheels (i.e. traction coefficient and tractive power efficiency) as affected by wheel load, slippage and forward velocity at three different levels with three replicates to form a total of 162 data points. The pertinent experiments were carried out in the soil bin testing facility. A feed-forward ANN (artificial neural network) with standard BP (back propagation) algorithm was practiced to construct a supervised representation to predict the energy efficiency indices of driven wheels. It was deduced, in view of the statistical performance criteria (i.e. MSE (mean squared error) and R2), that a supervised ANN with 3-8-10-2 topology and Levenberg–Marquardt training algorithm represented the optimal model. Modeling implementations indicated that ANN is a powerful technique to prognosticate the stochastic energy efficiency indices as affected by soil-wheel interactions with MSE of 0.001194 and R2 of 0.987 and 0.9772 for traction coefficient and tractive power efficiency. It was found that traction coefficient and tractive power efficiency increase with increased slippage. A similar trend is valid for the influence of wheel load on the objective parameters. Wherein increase of velocity led to an increment of tractive power efficiency, velocity had no significant effect on traction coefficient.

Suggested Citation

  • Taghavifar, Hamid & Mardani, Aref, 2014. "Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices," Energy, Elsevier, vol. 68(C), pages 651-657.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:651-657
    DOI: 10.1016/j.energy.2014.01.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ko, Chia-Nan & Lee, Cheng-Ming, 2013. "Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter," Energy, Elsevier, vol. 49(C), pages 413-422.
    2. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    3. Liang, Aizhen & McLaughlin, Neil B. & Ma, B.L. & Gregorich, Edward G. & Morrison, Malcolm J. & Burtt, Stephen D. & Patterson, B. Scott & Evenson, Lynne I., 2013. "Changes in mouldboard plough draught and tractor fuel consumption on continuous corn after 18 years of organic and inorganic N amendments," Energy, Elsevier, vol. 52(C), pages 89-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taghavifar, Hamid & Mardani, Aref & Hosseinloo, Ashkan Haji, 2015. "Appraisal of artificial neural network-genetic algorithm based model for prediction of the power provided by the agricultural tractors," Energy, Elsevier, vol. 93(P2), pages 1704-1710.
    2. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    3. Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2014. "Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm," Energy, Elsevier, vol. 71(C), pages 656-664.
    4. Ekinci, Şerafettin & Çarman, Kazım & Kahramanlı, Humar, 2015. "Investigation and modeling of the tractive performance of radial tires using off-road vehicles," Energy, Elsevier, vol. 93(P2), pages 1953-1963.
    5. Zhang, Sheng-li & Wen, Chang-kai & Ren, Wen & Luo, Zhen-hao & Xie, Bin & Zhu, Zhong-xiang & Chen, Zhong-ju, 2023. "A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing," Energy, Elsevier, vol. 263(PD).
    6. Taghavifar, Hamid & Mardani, Aref, 2015. "Evaluating the effect of tire parameters on required drawbar pull energy model using adaptive neuro-fuzzy inference system," Energy, Elsevier, vol. 85(C), pages 586-593.
    7. Mardani, Aref & Taghavifar, Hamid, 2016. "An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 918-924.
    8. Taghavifar, Hamid & Mardani, Aref & Karim-Maslak, Haleh, 2014. "Multi-criteria optimization model to investigate the energy waste of off-road vehicles utilizing soil bin facility," Energy, Elsevier, vol. 73(C), pages 762-770.
    9. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    10. Taghavifar, Hamid & Mardani, Aref & Karim Maslak, Haleh, 2015. "A comparative study between artificial neural networks and support vector regression for modeling of the dissipated energy through tire-obstacle collision dynamics," Energy, Elsevier, vol. 89(C), pages 358-364.
    11. Janulevičius, Algirdas & Damanauskas, Vidas, 2015. "How to select air pressures in the tires of MFWD (mechanical front-wheel drive) tractor to minimize fuel consumption for the case of reasonable wheel slip," Energy, Elsevier, vol. 90(P1), pages 691-700.
    12. Taghavifar, Hamid & Mardani, Aref & Hosseinloo, Ashkan Haji, 2015. "Experimental analysis of the dissipated energy through tire-obstacle collision dynamics," Energy, Elsevier, vol. 91(C), pages 573-578.
    13. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    14. Li, Tianyu & Huang, Lingtao & Liu, Huiying, 2019. "Energy management and economic analysis for a fuel cell supercapacitor excavator," Energy, Elsevier, vol. 172(C), pages 840-851.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghavifar, Hamid & Mardani, Aref, 2014. "A comparative trend in forecasting ability of artificial neural networks and regressive support vector machine methodologies for energy dissipation modeling of off-road vehicles," Energy, Elsevier, vol. 66(C), pages 569-576.
    2. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    3. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    4. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Christopher Bennett & Rodney A. Stewart & Junwei Lu, 2014. "Autoregressive with Exogenous Variables and Neural Network Short-Term Load Forecast Models for Residential Low Voltage Distribution Networks," Energies, MDPI, vol. 7(5), pages 1-23, April.
    7. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    8. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    9. García-Domingo, B. & Aguilera, J. & de la Casa, J. & Fuentes, M., 2014. "Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module," Energy, Elsevier, vol. 70(C), pages 239-250.
    10. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    11. Cheng-Ming Lee & Chia-Nan Ko, 2016. "Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network," Energies, MDPI, vol. 9(12), pages 1-15, November.
    12. Antonello Rosato & Rosa Altilio & Rodolfo Araneo & Massimo Panella, 2017. "Prediction in Photovoltaic Power by Neural Networks," Energies, MDPI, vol. 10(7), pages 1-25, July.
    13. Adeshina Y. Alani & Isaac O. Osunmakinde, 2017. "Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes," Sustainability, MDPI, vol. 9(11), pages 1-27, October.
    14. Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
    15. Deihimi, Ali & Orang, Omid & Showkati, Hemen, 2013. "Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction," Energy, Elsevier, vol. 57(C), pages 382-401.
    16. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    17. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    18. Wu, Zhuochun & Xia, Xiangjie & Xiao, Liye & Liu, Yilin, 2020. "Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 261(C).
    19. Guowei Cai & Wenjin Wang & Junhai Lu, 2016. "A Novel Hybrid Short Term Load Forecasting Model Considering the Error of Numerical Weather Prediction," Energies, MDPI, vol. 9(12), pages 1-19, November.
    20. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:651-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.