IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp918-924.html
   My bibliography  Save this article

An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran

Author

Listed:
  • Mardani, Aref
  • Taghavifar, Hamid

Abstract

The present investigation is aimed at the assessment of the energy consumption of grape production in West Azerbayjan along with the assessment of environmental indices during the cultivation. The studies were carried out in terms of energy input and output, yield, energy use efficiency, specific energy, energy productivity, and net energy gain where CO2 emission was investigated as the substantial emission. As well, the portions of different direct, indirect, renewable and nonrenewable energy sources were encompassed. A supervised Artificial Neural Network was employed to prognosticate the energy and environmental indices for grape production in the studied region. Energy inputs included human labor, machinery, diesel fuel, herbicide, insecticide, chemical fertilizers, manure, irrigation water and electricity. The results showed that the total energy input and output for grape production were at 39968.49 and 218713MJha−1, respectively. Among the energy inputs, Nitrogen with 35.6% and irrigation water with 21.81% allocated the greatest shares. The value of total greenhouse gas emission was estimated at 858.621kgCO2eqha−1 for grape production with the greatest portions for chemical fertilizers and irrigation, respectively. Of diversified Artificial Neural Network approaches, Levenberg–Marqardt training algorithm with root mean square equal to 0.2171 was achieved at 14 neurons in the hidden layer whilst the coefficient of determination values of 0.9927 and 0.9935 were obtained for energy input and environmental emission prediction, respectively.

Suggested Citation

  • Mardani, Aref & Taghavifar, Hamid, 2016. "An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 918-924.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:918-924
    DOI: 10.1016/j.rser.2015.10.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Rafiee, Hamed, 2010. "Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran," Renewable Energy, Elsevier, vol. 35(5), pages 1071-1075.
    2. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    3. Ozkan, Burhan & Fert, Cemal & Karadeniz, C. Feyza, 2007. "Energy and cost analysis for greenhouse and open-field grape production," Energy, Elsevier, vol. 32(8), pages 1500-1504.
    4. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    5. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    6. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    7. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
    8. Khoshroo, Alireza & Mulwa, Richard & Emrouznejad, Ali & Arabi, Behrouz, 2013. "A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production," Energy, Elsevier, vol. 63(C), pages 189-194.
    9. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    10. Tzilivakis, J. & Warner, D.J. & May, M. & Lewis, K.A. & Jaggard, K., 2005. "An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK," Agricultural Systems, Elsevier, vol. 85(2), pages 101-119, August.
    11. Taghavifar, Hamid & Mardani, Aref, 2014. "Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices," Energy, Elsevier, vol. 68(C), pages 651-657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Xu, Bin, 2018. "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 15-27.
    2. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    3. Elahi, Ehsan & Khalid, Zainab, 2022. "Estimating smart energy inputs packages using hybrid optimisation technique to mitigate environmental emissions of commercial fish farms," Applied Energy, Elsevier, vol. 326(C).
    4. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    5. Soltanali, Hamzeh & Nikkhah, Amin & Rohani, Abbas, 2017. "Energy audit of Iranian kiwifruit production using intelligent systems," Energy, Elsevier, vol. 139(C), pages 646-654.
    6. Elhami, Behzad & Ghasemi Nejad Raini, Mahmoud & Soheili-Fard, Farshad, 2019. "Energy and environmental indices through life cycle assessment of raisin production: A case study (Kohgiluyeh and Boyer-Ahmad Province, Iran)," Renewable Energy, Elsevier, vol. 141(C), pages 507-515.
    7. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    8. Tian, Dong & Zhang, Min & Xiong, Chuqiao & Mu, Weisong & Feng, Jianying, 2019. "Measuring the energy consumption and energy efficiency in two-harvest-a-year grape cultivation," Energy, Elsevier, vol. 189(C).
    9. Hossein Jargan & Abbas Rohani & Armaghan Kosari-Moghaddam, 2022. "Application of modeling techniques for energy analysis of fruit production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2616-2639, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    2. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    3. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    4. Dong Tian & Min Zhang & Xuejian Wei & Jing Wang & Weisong Mu & Jianying Feng, 2018. "GIS-Based Energy Consumption and Spatial Variation of Protected Grape Cultivation in China," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    5. Hemmati, Abolfazl & Tabatabaeefar, Ahmad & Rajabipour, Ali, 2013. "Comparison of energy flow and economic performance between flat land and sloping land olive orchards," Energy, Elsevier, vol. 61(C), pages 472-478.
    6. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    7. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    8. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    9. Taghavifar, Hamid & Mardani, Aref, 2015. "Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA)," Renewable Energy, Elsevier, vol. 74(C), pages 208-213.
    10. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    11. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    12. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    13. M.R. Jadidi & M.S. Sabuni & M. Homayounifar & A. Mohammadi, 2012. "Assessment of energy use pattern for tomato production in Iran: A case study from the Marand region," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 58(2), pages 50-56.
    14. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    15. Elhami, Behzad & Ghasemi Nejad Raini, Mahmoud & Soheili-Fard, Farshad, 2019. "Energy and environmental indices through life cycle assessment of raisin production: A case study (Kohgiluyeh and Boyer-Ahmad Province, Iran)," Renewable Energy, Elsevier, vol. 141(C), pages 507-515.
    16. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    17. Ramedani, Z. & Rafiee, S. & Heidari, M.D., 2011. "An investigation on energy consumption and sensitivity analysis of soybean production farms," Energy, Elsevier, vol. 36(11), pages 6340-6344.
    18. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    19. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    20. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:918-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.