IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp164-171.html
   My bibliography  Save this article

Thermal properties of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains

Author

Listed:
  • Zhang, Ke
  • Johnson, Loretta
  • Nelson, Richard
  • Yuan, Wenqiao
  • Pei, Zhijian
  • Sun, Xiuzhi S.
  • Wang, Donghai

Abstract

The objective of this research was to study the effect of ecotype and planting location on thermal properties of big bluestem. Three big bluestem ecotypes (CKS, EKS, ILL) and a cultivar (KAW) were harvested in 2010 from four locations (Colby, Hays, and Manhattan, KS; and Carbondale, IL) and were evaluated for their specific heat, thermal conductivity, thermal stability, HHV (high heating value), and proximate contents. All populations revealed a large variation in specific heat (2.35–2.62 kJ/kg/K), thermal conductivity (77.85–99.06 × 10−3 W/m/K), thermogravimetric analysis as weight loss during the heating process (71–73%), and HHV (17.64–18.67 MJ/kg). Specific heat of the big bluestem was significantly affected by planting location, ecotype, and interaction between location and ecotype. Planting location had stronger influence on specific heat than ecotype. Specific heat increased as temperature increased, and a linear correlation model for specific heat prediction was developed as a function of temperature. Ecotype, planting location, and the interaction of ecotype and planting location did not have a significant effect on thermal conductivity; however, density and particle size showed a completely opposite relationship on thermal conductivity. Both planting location and ecotype significantly affected HHV. Among all environmental factors, potential evapotranspiration had the most significant effect on thermal properties.

Suggested Citation

  • Zhang, Ke & Johnson, Loretta & Nelson, Richard & Yuan, Wenqiao & Pei, Zhijian & Sun, Xiuzhi S. & Wang, Donghai, 2014. "Thermal properties of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains," Energy, Elsevier, vol. 64(C), pages 164-171.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:164-171
    DOI: 10.1016/j.energy.2013.11.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    2. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ke & Johnson, Loretta & Vara Prasad, P.V. & Pei, Zhijian & Wang, Donghai, 2015. "Big bluestem as a bioenergy crop: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 740-756.
    2. Zhang, Ke & Zhou, Ling & Brady, Michael & Xu, Feng & Yu, Jianming & Wang, Donghai, 2017. "Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy," Energy, Elsevier, vol. 118(C), pages 1353-1360.
    3. Zhang, Ke & Johnson, Loretta & Prasad, P.V. Vara & Pei, Zhijian & Yuan, Wenqiao & Wang, Donghai, 2015. "Comparison of big bluestem with other native grasses: Chemical composition and biofuel yield," Energy, Elsevier, vol. 83(C), pages 358-365.
    4. Zhang, Ke & Xu, Youjie & Johnson, Loretta & Yuan, Wenqiao & Pei, Zhijian & Wang, Donghai, 2017. "Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem," Renewable Energy, Elsevier, vol. 109(C), pages 101-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Liu & Panpan Lang & Ailing Lu & Yanling Li & Xueqin Li & Tanglei Sun & Yantao Yang & Hui Li & Tingzhou Lei, 2022. "Effect of Evolution of Carbon Structure during Torrefaction in Woody Biomass on Thermal Degradation," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    2. Nobre, Catarina & Longo, Andrei & Vilarinho, Cândida & Gonçalves, Margarida, 2020. "Gasification of pellets produced from blends of biomass wastes and refuse derived fuel chars," Renewable Energy, Elsevier, vol. 154(C), pages 1294-1303.
    3. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    4. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    5. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    6. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    7. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    8. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    9. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    10. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    11. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    12. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    13. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    15. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    16. Ujjayant Chakravorty & Marie‐Hélène Hubert & Beyza Ural Marchand, 2019. "Food for fuel: The effect of the US biofuel mandate on poverty in India," Quantitative Economics, Econometric Society, vol. 10(3), pages 1153-1193, July.
    17. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    18. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    19. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    20. Alexis Sagastume & Jorge M. Mendoza & Juan J. Cabello & Jes s D. Rhenals, 2021. "The Available Waste-to-energy Potential from Agricultural Wastes in the Department of C rdoba, Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 44-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:164-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.