IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp679-687.html
   My bibliography  Save this article

Thermodynamic efficiency of synthesis, storage and breakdown of the high-energy metabolites by photosynthetic microalgae

Author

Listed:
  • Sorgüven, Esra
  • Özilgen, Mustafa

Abstract

Lipids and carbohydrates are employed in the nature to store internal energy due to the large number of the high energy atomic bonds in their structure. Internal energy stored in the bonds is used to fuel work producing engines or metabolic activity of living organisms. This paper investigates the thermodynamic efficiency of the glucose and lipid synthesis and breakdown by photosynthetic microalgae. Photosynthetic microalgae are able to convert 3.8% of the solar exergy into the chemical exergy of algal lipid. As the microalgae convert the first product of the photosynthesis, i.e. glucose, into lipid, 47–49% of the chemical exergy is lost. If the microalgal cell consumes the photosynthetically produced glucose for its own energy demand, then about 30% of the glucose exergy can be converted into work potential in case of immediate and short-term energy demands. Organism can convert about 22% of the glucose exergy into work potential after a long-term storage. If the algal lipid is harvested for biodiesel production and the produced biodiesel is combusted in a Diesel engine, then about 17% of the exergy of the photosynthetically produced glucose can be converted into useful work. Biodiesel is among the most popular renewable fuels. The lipids are harvested from their storage in the cells to produce biodiesel before following the lipid breakdown path of the cellular metabolism. Our analysis indicates that, extracting the first product of photosynthesis, i.e. glucose or glucose polymers instead of lipids may be more efficient thermodynamically, if new motors capable to extract their bond energy is developed.

Suggested Citation

  • Sorgüven, Esra & Özilgen, Mustafa, 2013. "Thermodynamic efficiency of synthesis, storage and breakdown of the high-energy metabolites by photosynthetic microalgae," Energy, Elsevier, vol. 58(C), pages 679-687.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:679-687
    DOI: 10.1016/j.energy.2013.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300501X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jørgensen, S.E. & Nors Nielsen, Søren, 2007. "Application of exergy as thermodynamic indicator in ecology," Energy, Elsevier, vol. 32(5), pages 673-685.
    2. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    3. Talens, Laura & Villalba, Gara & Gabarrell, Xavier, 2007. "Exergy analysis applied to biodiesel production," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 397-407.
    4. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    5. Sorguven, Esra & Özilgen, Mustafa, 2010. "Thermodynamic assessment of algal biodiesel utilization," Renewable Energy, Elsevier, vol. 35(9), pages 1956-1966.
    6. Ayres, Robert U., 1999. "The second law, the fourth law, recycling and limits to growth," Ecological Economics, Elsevier, vol. 29(3), pages 473-483, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genc, S. & Sorguven, E. & Ozilgen, M. & Aksan Kurnaz, I., 2013. "Unsteady exergy destruction of the neuron under dynamic stress conditions," Energy, Elsevier, vol. 59(C), pages 422-431.
    2. Küçük, Kübra & Tevatia, Rahul & Sorgüven, Esra & Demirel, Yaşar & Özilgen, Mustafa, 2015. "Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii," Energy, Elsevier, vol. 83(C), pages 503-510.
    3. Velásquez, H.I. & De Oliveira, S. & Benjumea, P. & Pellegrini, L.F., 2013. "Exergo-environmental evaluation of liquid biofuel production processes," Energy, Elsevier, vol. 54(C), pages 97-103.
    4. Sorguven, Esra & Özilgen, Mustafa, 2010. "Thermodynamic assessment of algal biodiesel utilization," Renewable Energy, Elsevier, vol. 35(9), pages 1956-1966.
    5. Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
    6. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    7. Sousa, Tania & Domingos, Tiago, 2006. "Is neoclassical microeconomics formally valid? An approach based on an analogy with equilibrium thermodynamics," Ecological Economics, Elsevier, vol. 58(1), pages 160-169, June.
    8. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    9. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    10. Velásquez-Arredondo, H.I. & De Oliveira Junior, S. & Benjumea, P., 2012. "Exergy efficiency analysis of chemical and biochemical stages involved in liquid biofuels production processes," Energy, Elsevier, vol. 41(1), pages 138-145.
    11. Malghan, Deepak, 2011. "A dimensionally consistent aggregation framework for biophysical metrics," Ecological Economics, Elsevier, vol. 70(5), pages 900-909, March.
    12. Cogoy, Mario, 2009. "A Model of Eco-Efficiency and Recycling," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-30.
    13. Teles dos Santos, Moisés & Park, Song Won, 2013. "Sustainability and biophysics basis of technical and economic processes: A survey of the reconciliation by thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 261-271.
    14. Portha, Jean-François & Louret, Sylvain & Pons, Marie-Noëlle & Jaubert, Jean-Noël, 2010. "Estimation of the environmental impact of a petrochemical process using coupled LCA and exergy analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(5), pages 291-298.
    15. Kovalev, Andrey V., 2016. "Misuse of thermodynamic entropy in economics," Energy, Elsevier, vol. 100(C), pages 129-136.
    16. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    17. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    18. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    19. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    20. Jeroen van den Bergh & John Gowdy, 2000. "Evolutionary Theories in Environmental and Resource Economics: Approaches and Applications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 17(1), pages 37-57, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:679-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.