IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v46y2012i1p32-41.html
   My bibliography  Save this article

Exergetic and environmental assessment of room air conditioners in Turkish market

Author

Listed:
  • Ziya Sogut, M.

Abstract

This study utilizes two factors, EEF (exergy efficiency factor) or exergetic COP (coefficient of performance) and MTEWI (modified total equivalent warming impact), which was proposed to evaluate exergetic and environmental performance of RAC (room air conditioners) sold in the Turkish market. In the study, vapour compression cooling cycle used whole RAC units is taken as model for the analyses. The results are shown that average EEF value of units using R-22 and R-410A gas are 74.53% and 74.64% respectively. Besides, R-410A gas, which is used in many split systems and marketed as an environmental friendly gas, has an effect that is approximately 23.18% higher than the R-22 gas which is no more in use. The study finally emphasizes the reasons why EEF and MTEWI factors should be given priority in terms of efficiency and environmental effects in the RAC units.

Suggested Citation

  • Ziya Sogut, M., 2012. "Exergetic and environmental assessment of room air conditioners in Turkish market," Energy, Elsevier, vol. 46(1), pages 32-41.
  • Handle: RePEc:eee:energy:v:46:y:2012:i:1:p:32-41
    DOI: 10.1016/j.energy.2012.06.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212005178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.06.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanco-Marigorta, Ana M. & Victoria Sanchez-Henríquez, M. & Peña-Quintana, Juan A., 2011. "Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant," Energy, Elsevier, vol. 36(4), pages 1966-1972.
    2. Lin, Jiang & Rosenquist, Gregory, 2008. "Stay cool with less work: China's new energy-efficiency standards for air conditioners," Energy Policy, Elsevier, vol. 36(3), pages 1090-1095, March.
    3. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    4. Onan, C. & Ozkan, D.B. & Erdem, S., 2010. "Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications," Energy, Elsevier, vol. 35(12), pages 5277-5285.
    5. Catton, Will & Carrington, Gerry & Sun, Zhifa, 2011. "Exergy analysis of an isothermal heat pump dryer," Energy, Elsevier, vol. 36(8), pages 4616-4624.
    6. Meggers, Forrest & Ritter, Volker & Goffin, Philippe & Baetschmann, Marc & Leibundgut, Hansjürg, 2012. "Low exergy building systems implementation," Energy, Elsevier, vol. 41(1), pages 48-55.
    7. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    8. Rezayan, Omid & Behbahaninia, Ali, 2011. "Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems," Energy, Elsevier, vol. 36(2), pages 888-895.
    9. Li, Jing & Pei, Gang & Li, Yunzhu & Wang, Dongyue & Ji, Jie, 2012. "Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures," Energy, Elsevier, vol. 38(1), pages 85-95.
    10. Zhou, Guobing & Zhang, Yufeng, 2010. "Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290," Applied Energy, Elsevier, vol. 87(5), pages 1522-1528, May.
    11. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    12. Torrella, E. & Larumbe, J.A. & Cabello, R. & Llopis, R. & Sanchez, D., 2011. "A general methodology for energy comparison of intermediate configurations in two-stage vapour compression refrigeration systems," Energy, Elsevier, vol. 36(7), pages 4119-4124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
    2. Mota-Babiloni, Adrián & Barbosa, Jader R. & Makhnatch, Pavel & Lozano, Jaime A., 2020. "Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szabó, Gábor L. & Kalmár, Ferenc, 2019. "Investigation of energy and exergy performances of radiant cooling systems in buildings – A design approach," Energy, Elsevier, vol. 185(C), pages 449-462.
    2. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    3. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    4. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    5. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    6. Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
    7. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    8. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    9. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    10. Çakır, Uğur & Çomaklı, Kemal & Çomaklı, Ömer & Karslı, Süleyman, 2013. "An experimental exergetic comparison of four different heat pump systems working at same conditions: As air to air, air to water, water to water and water to air," Energy, Elsevier, vol. 58(C), pages 210-219.
    11. Turan, Önder & Aydın, Hakan, 2016. "Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications," Energy, Elsevier, vol. 115(P1), pages 914-923.
    12. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    13. Mehak Shafiq & Muhammad Farooq & Waqas Javed & George Loumakis & Don McGlinchey, 2023. "Thermo-Hydraulic Performance Analysis of Fe 3 O 4 -Water Nanofluid-Based Flat-Plate Solar Collectors," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    14. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    15. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    16. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    17. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    18. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    19. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    20. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:46:y:2012:i:1:p:32-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.