IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p304-311.html
   My bibliography  Save this article

Use of Neural Networks for modeling and predicting boiler's operating performance

Author

Listed:
  • Kljajić, Miroslav
  • Gvozdenac, Dušan
  • Vukmirović, Srdjan

Abstract

The need for high boiler operating performance requires the application of improved techniques for the rational use of energy. The analysis presented is guided by an effort to find possibilities for ways energy resources can be used wisely to secure a more efficient final energy supply. However, the biggest challenges are related to the variety and stochastic nature of influencing factors. The paper presents a method for modeling, assessing, and predicting the efficiency of boilers based on measured operating performance. The method utilizes a neural network approach to analyze and predict boiler efficiency and also to discover possibilities for enhancing efficiency. The analysis is based on energy surveys of 65 randomly selected boilers located at over 50 sites in the northern province of Serbia. These surveys included a representative range of industrial, public and commercial users of steam and hot water. The sample covered approximately 25% of all boilers in the province and yielded reliable and relevant results. By creating a database combined with soft computing assistance a wide range of possibilities are created for identifying and assessing factors of influence and making a critical evaluation of practices used on the supply side as a source of identified inefficiency.

Suggested Citation

  • Kljajić, Miroslav & Gvozdenac, Dušan & Vukmirović, Srdjan, 2012. "Use of Neural Networks for modeling and predicting boiler's operating performance," Energy, Elsevier, vol. 45(1), pages 304-311.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:304-311
    DOI: 10.1016/j.energy.2012.02.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    3. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
    4. Fast, M. & Palmé, T., 2010. "Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant," Energy, Elsevier, vol. 35(2), pages 1114-1120.
    5. Rusinowski, Henryk & Stanek, Wojciech, 2010. "Hybrid model of steam boiler," Energy, Elsevier, vol. 35(2), pages 1107-1113.
    6. Bujak, Janusz, 2009. "Optimal control of energy losses in multi-boiler steam systems," Energy, Elsevier, vol. 34(9), pages 1260-1270.
    7. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    8. Prieto, M.M & Montañés, E & Menéndez, O, 2001. "Power plant condenser performance forecasting using a non-fully connected artificial neural network," Energy, Elsevier, vol. 26(1), pages 65-79.
    9. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    10. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    11. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    12. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods," Energy, Elsevier, vol. 36(7), pages 3968-3978.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chantasiriwan, Somchart, 2021. "Optimum installation of flue gas dryer and additional air heater to increase the efficiency of coal-fired utility boiler," Energy, Elsevier, vol. 221(C).
    2. Olanrewaju, O.A & Jimoh, A.A, 2014. "Review of energy models to the development of an efficient industrial energy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 661-671.
    3. Pino-Mejías, Rafael & Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2017. "Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO2 emissions," Energy, Elsevier, vol. 118(C), pages 24-36.
    4. Pino-Mejías, Rafael & Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2018. "Artificial neural networks and linear regression prediction models for social housing allocation: Fuel Poverty Potential Risk Index," Energy, Elsevier, vol. 164(C), pages 627-641.
    5. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2013. "Assessing the energy potential in the South African industry: A combined IDA-ANN-DEA (Index Decomposition Analysis-Artificial Neural Network-Data Envelopment Analysis) model," Energy, Elsevier, vol. 63(C), pages 225-232.
    6. Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
    7. Mikulandrić, Robert & Lončar, Dražen & Cvetinović, Dejan & Spiridon, Gabriel, 2013. "Improvement of existing coal fired thermal power plants performance by control systems modifications," Energy, Elsevier, vol. 57(C), pages 55-65.
    8. David Bienvenido-Huertas & Jesús A. Pulido-Arcas & Carlos Rubio-Bellido & Alexis Pérez-Fargallo, 2021. "Prediction of Fuel Poverty Potential Risk Index Using Six Regression Algorithms: A Case-Study of Chilean Social Dwellings," Sustainability, MDPI, vol. 13(5), pages 1-30, February.
    9. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikulandrić, Robert & Lončar, Dražen & Cvetinović, Dejan & Spiridon, Gabriel, 2013. "Improvement of existing coal fired thermal power plants performance by control systems modifications," Energy, Elsevier, vol. 57(C), pages 55-65.
    2. Colorado, D. & Ali, M.E. & García-Valladares, O. & Hernández, J.A., 2011. "Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution," Energy, Elsevier, vol. 36(2), pages 854-863.
    3. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    4. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    5. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    6. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
    7. Rostek, Kornel & Morytko, Łukasz & Jankowska, Anna, 2015. "Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks," Energy, Elsevier, vol. 89(C), pages 914-923.
    8. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2009. "Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks," Applied Energy, Elsevier, vol. 86(9), pages 1442-1449, September.
    9. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    10. Keçebaş, Ali & Alkan, Mehmet Ali & Yabanova, İsmail & Yumurtacı, Mehmet, 2013. "Energetic and economic evaluations of geothermal district heating systems by using ANN," Energy Policy, Elsevier, vol. 56(C), pages 558-567.
    11. Xu, Weijun & Gu, Ren & Liu, Youzhu & Dai, Yongwu, 2015. "Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China," Economic Modelling, Elsevier, vol. 45(C), pages 127-135.
    12. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
    13. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    14. Jihoon Jang & Joosang Lee & Eunjo Son & Kyungyong Park & Gahee Kim & Jee Hang Lee & Seung-Bok Leigh, 2019. "Development of an Improved Model to Predict Building Thermal Energy Consumption by Utilizing Feature Selection," Energies, MDPI, vol. 12(21), pages 1-20, November.
    15. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    16. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    17. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    18. Wu, Sheng-Ju & Shiah, Sheau-Wen & Yu, Wei-Lung, 2009. "Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network," Renewable Energy, Elsevier, vol. 34(1), pages 135-144.
    19. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    20. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:304-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.