IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4572-4581.html
   My bibliography  Save this article

Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR

Author

Listed:
  • Ishida, Masahiro
  • Yamamoto, Shohei
  • Ueki, Hironobu
  • Sakaguchi, Daisaku

Abstract

In order to realize a premixed compression ignition (PCI) engine, the effects of bioethanol–gas oil blends and exhaust gas recirculation (EGR) on PM–NOx trade-off have been investigated focusing on ignition delay, premixed combustion, diffusion combustion, smoke, NOx and thermal efficiency. The present experiment was done by increasing the ethanol blend ratio and ethanol and by increasing the EGR ratio in a single cylinder direct injection diesel engine. It is found that a remarkable improvement in PM–NOx trade-off can be achieved by promoting the premixing based on the ethanol blend fuel having low evaporation temperature, large latent heat and low cetane number as well, in addition, based on a marked elongation of ignition delay due to the low cetane number fuel and the low oxygen intake charge. As a result, very low levels of NOx and PM, which satisfies the 2009 emission standards imposed on heavy duty diesel engines in Japan, were achieved without deterioration of brake thermal efficiency in the PCI engine fuelled with the 50% ethanol blend diesel fuel and the high EGR ratio. It is noticed that smoke can be reduced even by increasing the EGR ratio under the highly premixed condition.

Suggested Citation

  • Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4572-4581
    DOI: 10.1016/j.energy.2010.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papagiannakis, R.G. & Kotsiopoulos, P.N. & Zannis, T.C. & Yfantis, E.A. & Hountalas, D.T. & Rakopoulos, C.D., 2010. "Theoretical study of the effects of engine parameters on performance and emissions of a pilot ignited natural gas diesel engine," Energy, Elsevier, vol. 35(2), pages 1129-1138.
    2. Tsolakis, A. & Megaritis, A. & Yap, D., 2008. "Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels," Energy, Elsevier, vol. 33(3), pages 462-470.
    3. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    4. Megaritis, A. & Yap, D. & Wyszynski, M.L., 2007. "Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping," Energy, Elsevier, vol. 32(12), pages 2396-2400.
    5. Carlucci, A.P. & de Risi, A. & Laforgia, D. & Naccarato, F., 2008. "Experimental investigation and combustion analysis of a direct injection dual-fuel diesel–natural gas engine," Energy, Elsevier, vol. 33(2), pages 256-263.
    6. Mack, J. Hunter & Aceves, Salvador M. & Dibble, Robert W., 2009. "Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine," Energy, Elsevier, vol. 34(6), pages 782-787.
    7. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    8. Torres García, Miguel & José Jiménez-Espadafor Aguilar, Francisco & Sánchez Lencero, Tomás, 2009. "Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode," Energy, Elsevier, vol. 34(2), pages 159-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    2. Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
    3. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    4. Park, Su Han & Shin, Dalho & Park, Jeonghyun, 2016. "Effect of ethanol fraction on the combustion and emission characteristics of a dimethyl ether-ethanol dual-fuel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 182(C), pages 243-252.
    5. Jia, Ming & Li, Yaopeng & Xie, Maozhao & Wang, Tianyou, 2013. "Numerical evaluation of the potential of late intake valve closing strategy for diesel PCCI (premixed charge compression ignition) engine in a wide speed and load range," Energy, Elsevier, vol. 51(C), pages 203-215.
    6. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    7. Park, Su Han & Cha, Junepyo & Lee, Chang Sik, 2012. "Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine," Applied Energy, Elsevier, vol. 99(C), pages 334-343.
    8. Esarte, Claudia & Abián, María & Millera, Ángela & Bilbao, Rafael & Alzueta, María U., 2012. "Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol," Energy, Elsevier, vol. 43(1), pages 37-46.
    9. Chintala, Venkateswarlu & Subramanian, K.A., 2016. "CFD analysis on effect of localized in-cylinder temperature on nitric oxide (NO) emission in a compression ignition engine under hydrogen-diesel dual-fuel mode," Energy, Elsevier, vol. 116(P1), pages 470-488.
    10. Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
    11. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    12. You Zhou & Wei Hong & Ye Yang & Xiaoping Li & Fangxi Xie & Yan Su, 2019. "Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine," Energies, MDPI, vol. 12(17), pages 1-18, September.
    13. Tira, H.S. & Herreros, J.M. & Tsolakis, A. & Wyszynski, M.L., 2012. "Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels," Energy, Elsevier, vol. 47(1), pages 620-629.
    14. Sukjit, E. & Herreros, J.M. & Dearn, K.D. & García-Contreras, R. & Tsolakis, A., 2012. "The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends," Energy, Elsevier, vol. 42(1), pages 364-374.
    15. Chintala, Venkateswarlu & Subramanian, K.A., 2013. "A CFD (computational fluid dynamics) study for optimization of gas injector orientation for performance improvement of a dual-fuel diesel engine," Energy, Elsevier, vol. 57(C), pages 709-721.
    16. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2013. "The effect of a homogeneous combustion catalyst on exhaust emissions from a single cylinder diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 556-562.
    17. Gong, Chang-Ming & Huang, Kuo & Jia, Jing-Long & Su, Yan & Gao, Qing & Liu, Xun-Jun, 2011. "Regulated emissions from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 36(5), pages 3379-3387.
    18. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    19. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    2. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    3. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    4. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    5. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    6. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    7. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    8. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Komninos, N.P. & Rakopoulos, C.D., 2012. "Modeling HCCI combustion of biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1588-1610.
    10. Ramos da Costa, Yoge Jerônimo & Barbosa de Lima, Antonio Gilson & Bezerra Filho, Celso Rosendo & de Araujo Lima, Laerte, 2012. "Energetic and exergetic analyses of a dual-fuel diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4651-4660.
    11. Liu, Haifeng & Ma, Guixiang & Hu, Bin & Zheng, Zunqing & Yao, Mingfa, 2018. "Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode," Energy, Elsevier, vol. 145(C), pages 592-602.
    12. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    13. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    14. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    15. Watanabe, Hirotatsu & Suzuki, Yoshiyuki & Harada, Takuji & Matsushita, Yohsuke & Aoki, Hideyuki & Miura, Takatoshi, 2010. "An experimental investigation of the breakup characteristics of secondary atomization of emulsified fuel droplet," Energy, Elsevier, vol. 35(2), pages 806-813.
    16. Albayrak Çeper, Bilge & Yıldız, Melih & Akansu, S. Orhan & Kahraman, Nafiz, 2017. "Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes," Energy, Elsevier, vol. 136(C), pages 72-79.
    17. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    19. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    20. Chintala, Venkateswarlu & Subramanian, K.A., 2013. "A CFD (computational fluid dynamics) study for optimization of gas injector orientation for performance improvement of a dual-fuel diesel engine," Energy, Elsevier, vol. 57(C), pages 709-721.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4572-4581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.