IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p284-293.html
   My bibliography  Save this article

Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines

Author

Listed:
  • Chen, Guisheng
  • Di, Lei
  • Zhang, Quanchang
  • Zheng, Zunqing
  • Zhang, Wei

Abstract

The effects of DMF (2,5-dimethylfuran) fuel properties combined with EGR (exhaust gas recirculation), CA50, EHN (2-Ethylhexyl nitrate) and multi-injection strategies on combustion and emission characteristics were experimentally investigated in two common-rail diesel engines including a single-cylinder engine and a multi-cylinder engine. Results demonstrate that, with DMF addition into diesel, ID (ignition delay) prolongs and smoke decreases more greatly as EGR rate increases. When DMF addition fraction increases up to 40%, the inherent trade-off between NOx and smoke can be eliminated, but the MPRR (maximum pressure rise rate) is too high. However, the higher MPRR can be reduced efficiently without serious penalties in smoke and BTE (brake thermal efficiency) by delaying CA50 and adding EHN reasonably. Although DMF and gasoline have very similar physic-chemical properties, DMF/diesel blends are much more efficient than gasoline/diesel wide-distillation blends to reduce soot with high EGR rates due to its much longer ID and atomic oxygen. With increasing DMF addition fraction, BTE is affected less by the delay of CA50, meanwhile, multi-injection strategies have less impact on soot generation. Additionally, as compared to the delay of CA50 and the addition of EHN, the employ of pilot injection is poor to reduced MPRR for DMF/diesel blends.

Suggested Citation

  • Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:284-293
    DOI: 10.1016/j.energy.2015.09.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuriy Román-Leshkov & Christopher J. Barrett & Zhen Y. Liu & James A. Dumesic, 2007. "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates," Nature, Nature, vol. 447(7147), pages 982-985, June.
    2. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    3. Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
    4. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.
    5. Jia, Ming & Xie, Maozhao & Wang, Tianyou & Peng, Zhijun, 2011. "The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation," Applied Energy, Elsevier, vol. 88(9), pages 2967-2975.
    6. Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
    7. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    8. Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
    9. Iannuzzi, Stefano E. & Valentino, Gerardo, 2014. "Comparative behavior of gasoline–diesel/butanol–diesel blends and injection strategy management on performance and emissions of a light duty diesel engine," Energy, Elsevier, vol. 71(C), pages 321-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Mingzhang & Zheng, Zeyuan & Huang, Rong & Zhou, Xiaorong & Huang, Haozhong & Pan, Jiaying & Chen, Zhaohui, 2019. "Reduction in PM and NOX of a diesel engine integrated with n-octanol fuel addition and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    2. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    3. Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Shao, Aifang & Pan, Mingzhang, 2017. "Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate," Energy, Elsevier, vol. 118(C), pages 190-196.
    4. Duan, Jiaqi & Ying, Yaoyao & Liu, Dong, 2019. "Novel nanoscale control on soot formation by local CO2 micro-injection in ethylene inverse diffusion flames," Energy, Elsevier, vol. 179(C), pages 697-708.
    5. Viar, Nerea & Requies, Jesús M. & Agirre, Ion & Iriondo, Aitziber & Arias, Pedro L., 2019. "Furanic biofuels production from biomass using Cu-based heterogeneous catalysts," Energy, Elsevier, vol. 172(C), pages 531-544.
    6. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    7. Wei Tian & Yunlu Chu & Zhiqiang Han & Xiang Wang & Wenbin Yu & Xueshun Wu, 2019. "Experimental Study of the Effect of Intake Oxygen Concentration on Engine Combustion Process and Hydrocarbon Emissions with N-Butanol-Diesel Blended Fuel," Energies, MDPI, vol. 12(7), pages 1-17, April.
    8. Pan, Mingzhang & Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Huang, Rong & Liao, Jinyang, 2018. "Experimental study on combustion characteristics and emission performance of 2-phenylethanol addition in a downsized gasoline engine," Energy, Elsevier, vol. 163(C), pages 894-904.
    9. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice & Uslu, Gonca, 2021. "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
    2. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    3. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    5. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    6. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    7. Liu, Haifeng & Xu, Jia & Zheng, Zunqing & Li, Shanju & Yao, Mingfa, 2013. "Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends," Energy, Elsevier, vol. 62(C), pages 215-223.
    8. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
    9. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kyritsis, Dimitrios C., 2016. "Butanol or DEE blends with either straight vegetable oil or biodiesel excluding fossil fuel: Comparative effects on diesel engine combustion attributes, cyclic variability and regulated emissions trad," Energy, Elsevier, vol. 115(P1), pages 314-325.
    10. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    11. Jia, Ming & Li, Yaopeng & Xie, Maozhao & Wang, Tianyou, 2013. "Numerical evaluation of the potential of late intake valve closing strategy for diesel PCCI (premixed charge compression ignition) engine in a wide speed and load range," Energy, Elsevier, vol. 51(C), pages 203-215.
    12. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    13. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    14. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    15. Park, Su Han & Shin, Dalho & Park, Jeonghyun, 2016. "Effect of ethanol fraction on the combustion and emission characteristics of a dimethyl ether-ethanol dual-fuel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 182(C), pages 243-252.
    16. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    17. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    18. Chen, Zheng & Liu, Jingping & Han, Zhiyu & Du, Biao & Liu, Yun & Lee, Chiafon, 2013. "Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends," Energy, Elsevier, vol. 55(C), pages 638-646.
    19. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    20. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:284-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.