IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp697-708.html
   My bibliography  Save this article

Novel nanoscale control on soot formation by local CO2 micro-injection in ethylene inverse diffusion flames

Author

Listed:
  • Duan, Jiaqi
  • Ying, Yaoyao
  • Liu, Dong

Abstract

The present study demonstrated the novel control on nanostructures and reactivity of soot by CO2 local micro-injection in ethylene inverse diffusion flames. Both global and local sampling methods were employed to capture soot particles at different flame positions. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were applied to investigate detailed soot characteristics. The results indicated that, when CO2 was added using micro-injection in flames at micro flow rates, the soot exhibited turbostratic structures with amorphous characters and had shorter fringe length and larger fringe tortuosity related with higher oxidation reactivity compared to soot from the pure ethylene flame, which inferred that CO2 addition could be beneficial to enhance soot oxidation and make the soot to have a low carbonization. Especially, the injection of CO2 in flames caused an obvious effect on delaying and decreasing in soot nucleation and growth rates during soot evolution process. The properties of soot from the global quartz plate sampling were quite similar for different local injection positions. However, it was worth noting that the direct addition of CO2 through the oxidizer pipe at same flow rates had no significant effects on soot characteristics.

Suggested Citation

  • Duan, Jiaqi & Ying, Yaoyao & Liu, Dong, 2019. "Novel nanoscale control on soot formation by local CO2 micro-injection in ethylene inverse diffusion flames," Energy, Elsevier, vol. 179(C), pages 697-708.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:697-708
    DOI: 10.1016/j.energy.2019.04.203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Minye & Liu, Dong, 2018. "Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions," Energy, Elsevier, vol. 164(C), pages 642-654.
    2. Yaoyao Ying & Chenxuan Xu & Dong Liu & Bo Jiang & Pengfei Wang & Wei Wang, 2017. "Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames," Energies, MDPI, vol. 10(1), pages 1-16, January.
    3. Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
    4. Koegl, M. & Hofbeck, B. & Will, S. & Zigan, L., 2018. "Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates," Applied Energy, Elsevier, vol. 209(C), pages 426-434.
    5. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    6. Wei Wang & Dong Liu & Yaoyao Ying & Guannan Liu & Ye Wu, 2017. "On the Response of Nascent Soot Nanostructure and Oxidative Reactivity to Photoflash Exposure," Energies, MDPI, vol. 10(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Lei & Yan, Fuwu & Zhou, Mengxiang & Wang, Yu, 2021. "An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
    2. Bo Jiang & Pengfei Wang & Yaoyao Ying & Minye Luo & Dong Liu, 2018. "Nanoscale Characteristics and Reactivity of Nascent Soot from n -Heptane/2,5-Dimethylfuran Inverse Diffusion Flames with/without Magnetic Fields," Energies, MDPI, vol. 11(7), pages 1-21, July.
    3. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    4. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    5. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    6. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    7. Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
    8. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    9. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    10. Wei Tian & Yunlu Chu & Zhiqiang Han & Xiang Wang & Wenbin Yu & Xueshun Wu, 2019. "Experimental Study of the Effect of Intake Oxygen Concentration on Engine Combustion Process and Hydrocarbon Emissions with N-Butanol-Diesel Blended Fuel," Energies, MDPI, vol. 12(7), pages 1-17, April.
    11. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Benajes, J. & Novella, R. & De Lima, D. & Thein, K., 2017. "Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine," Applied Energy, Elsevier, vol. 193(C), pages 515-530.
    13. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    14. Yuehan Qiao & Gang Lyu & Chonglin Song & Xingyu Liang & Huawei Zhang & Dong Dong, 2019. "Optimization of Programmed Temperature Vaporization Injection for Determination of Polycyclic Aromatic Hydrocarbons from Diesel Combustion Process," Energies, MDPI, vol. 12(24), pages 1-13, December.
    15. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Krishnamoorthi, M. & Sreedhara, S. & Prakash Duvvuri, Pavan, 2020. "Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends," Applied Energy, Elsevier, vol. 263(C).
    17. Alessandro Falai & Daniela Anna Misul, 2023. "Data-Driven Model for Real-Time Estimation of NOx in a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 16(5), pages 1-17, February.
    18. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    19. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    20. Deqing Mei & Qisong Yu & Zhengjun Zhang & Shan Yue & Lizhi Tu, 2021. "Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine," Energies, MDPI, vol. 14(6), pages 1-14, March.

    More about this item

    Keywords

    Soot; CO2 local addition; Nanostructures; Reactivity;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:697-708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.