IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225018973.html
   My bibliography  Save this article

Development of ammonia-biodiesel fueled agricultural tractor: Aspects of retrofitting a compression ignition engine to direct ammonia injection

Author

Listed:
  • Pasternak, Michał
  • Przybyła, Grzegorz
  • Siddareddy, Reddy
  • Lewandowski, Michał
  • Bjørgen, Karl
  • Mauss, Fabian
  • Nadimi, Ebrahim
  • Peczkis, Grzegorz
  • Zhou, Min-min
  • Adamczyk, Wojciech

Abstract

The automotive industry has shown growing interest in ammonia as a carbon-free fuel, which holds potential for mitigating the greenhouse effect. Nonetheless, adapting current combustion engines to use ammonia necessitates prior modifications. This paper introduces a retrofitting technique for converting an existing compression ignition engine into one powered by a direct injection of ammonia and biodiesel. The development results from collaboration between Polish and Norwegian research teams as part of the ACTIVATE project (Ammonia as carbon-free fuel for internal combustion engine-driven agricultural vehicles). The new technology is grounded on experimental and numerical research involving a single-cylinder engine installed in a small agricultural tractor. Biodiesel was directly injected to initiate ammonia combustion. Experimental activities were performed on engine test benches and a chassis dynamometer, complemented by 0D and 3D simulations using the stochastic reactor model and CFD code Converge, respectively. A comprehensive exploration of engine operating conditions and fuel injection strategies was undertaken experimentally and numerically to assess the potential benefits and drawbacks of various designs. A segment of the research focused on analyzing nitrous oxide formation, given its significant impact on global warming. The investigations resulted in a method for combusting ammonia with biodiesel as an ignition enhancer. It was determined that maintaining a stable engine operation in a tractor under real driving scenarios requires 47% of the energy sourced from ammonia. Optimal engine performance occurs when ammonia and biodiesel are injected near the end of the compression stroke, closely followed by the ignition promoter. A prolonged interval between these injections impairs combustion efficiency and raises ammonia emissions. The integrated numerical and experimental research resulted in a demonstration tractor fueled by directly injected biodiesel and ammonia.

Suggested Citation

  • Pasternak, Michał & Przybyła, Grzegorz & Siddareddy, Reddy & Lewandowski, Michał & Bjørgen, Karl & Mauss, Fabian & Nadimi, Ebrahim & Peczkis, Grzegorz & Zhou, Min-min & Adamczyk, Wojciech, 2025. "Development of ammonia-biodiesel fueled agricultural tractor: Aspects of retrofitting a compression ignition engine to direct ammonia injection," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225018973
    DOI: 10.1016/j.energy.2025.136255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    3. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    4. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Junheng & Zhao, Wenyao & Ji, Qian & Wang, Zichun & Ma, Hongjie & Sun, Ping & Ao, Chengcheng, 2025. "Effects of ASR on combustion performance, GHG emissions and economic efficiency of ammonia/biodiesel dual-fuel low-carbon engine," Energy, Elsevier, vol. 319(C).
    2. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    3. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    4. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    5. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    6. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    7. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    8. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    9. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    10. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Liu, Hongxiang & Han, Ling & Cao, Yue, 2020. "Improving transmission efficiency and reducing energy consumption with automotive continuously variable transmission: A model prediction comprehensive optimization approach," Applied Energy, Elsevier, vol. 274(C).
    12. Gowthamraj Rajendran & Reiko Raute & Cedric Caruana, 2025. "A Comprehensive Review of Solar PV Integration with Smart-Grids: Challenges, Standards, and Grid Codes," Energies, MDPI, vol. 18(9), pages 1-80, April.
    13. Loris Ventura & Roberto Finesso & Stefano A. Malan, 2023. "Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm 3 Diesel Engine and Its Assessment through Model-in-the-Loop," Energies, MDPI, vol. 16(2), pages 1-23, January.
    14. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.
    15. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    16. Xiangyang, Wang & Yu, Liu & Xiaoping, Li & Fangxi, Xie & Beiping, Jiang, 2024. "Experimental study on improvement of air-dilution combustion performance of methanol engine by adjusting intake guide flappers, exhaust variable valve timing and split injection," Energy, Elsevier, vol. 313(C).
    17. Rocha, Déborah Domingos da & de Castro Radicchi, Fábio & Lopes, Gustavo Santos & Brunocilla, Marcello Francisco & Gomes, Paulo César de Ferreira & Santos, Nathalia Duarte Souza Alvarenga & Malaquias, , 2021. "Study of the water injection control parameters on combustion performance of a spark-ignition engine," Energy, Elsevier, vol. 217(C).
    18. Cheng, Tengfei & Duan, Ruiling & Li, Xueyi & Yan, Xiaodong & Yang, Xiyu & Shi, Cheng, 2025. "Progressive split injection strategies to combustion and emissions improvement of a heavy-duty diesel engine with ammonia enrichment," Energy, Elsevier, vol. 316(C).
    19. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
    20. Rafael Fernandes Mosquim & Flávia Mendes de Almeida Collaço & Carlos Eduardo Keutenedjian Mady, 2024. "Toward a Direct CO 2 Tax for the Brazilian LDV Fleet," Energies, MDPI, vol. 17(11), pages 1-24, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225018973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.