IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225018572.html
   My bibliography  Save this article

Carbon-negative power generation using syngas produced from CO2-cofeeding pyrolysis of lignocellulosic biomass

Author

Listed:
  • Lee, Taewoo
  • Lee, Sangyoon
  • Tsang, Yiu Fai
  • Kwon, Eilhann E.

Abstract

Lignocellulosic biomass is typically converted into biofuels through selective conversion of saccharides in the biomass, leaving considerable amounts of lignin as waste. Pyrolysis is an alternative solution for efficient feedstock utilization; however, the fuel use of biocrude face challenges due to their compositional heterogeneity. Thus, the pyrolytic conversion of biomass into syngas could be practical for efficient combustion under manageable equivalent ratios. This study focuses on enhancing syngas production from the pyrolysis of lignocellulosic biomass, such as walnut shells (WNSs), while leveraging CO2 as a partial oxidant. During pyrolysis, CO2 reacted with WNS-derived volatile compounds, converting them into CO-rich syngas. The CO2-driven CO enhancement was observed at ≥ 520 °C, requiring measures to accelerate CO2 reaction kinetics. Therefore, operational parameters, including test temperature and CO2 composition, were scrutinized to optimize CO2 reactivity during catalytic pyrolysis. To assess industrial applicability, the resultant syngas enriched with CO was applied for power generation in a gas-turbine system. Under optimal conditions (80 vol% CO2 and 700 °C), theoretical calculations enabled to estimate 1882.5 MJ s−1 of net turbine work and 76.18 % of thermal efficiency, revealing 2.71- and 3.01-fold increases compared to reference natural gases.

Suggested Citation

  • Lee, Taewoo & Lee, Sangyoon & Tsang, Yiu Fai & Kwon, Eilhann E., 2025. "Carbon-negative power generation using syngas produced from CO2-cofeeding pyrolysis of lignocellulosic biomass," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018572
    DOI: 10.1016/j.energy.2025.136215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yujia & Liu, Jinfu & Zhu, Linhai & Li, Qi & Guo, Yaqiong & Liu, Huanpeng & Yu, Daren, 2022. "Multi-objective performance optimization and control for gas turbine Part-load operation Energy-saving and NOx emission reduction," Applied Energy, Elsevier, vol. 320(C).
    2. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Qaseem, Mirza Faisal & Shaheen, Humaira & Wu, Ai-Min, 2021. "Cell wall hemicellulose for sustainable industrial utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    5. Aslan, Alper & Ilhan, Ozturk & Usama, Al-Mulali & Savranlar, Buket & Polat, Melike Atay & Metawa, Noura & Raboshuk, Alina, 2024. "Effect of economic policy uncertainty on CO2 with the discrimination of renewable and non renewable energy consumption," Energy, Elsevier, vol. 291(C).
    6. Xu, Qilong & Li, Xiaofei & Yu, Jiahui & Wang, Shuai & Luo, Kun & Fan, Jianren, 2024. "Optimization of parameters and thermodynamics of gasification process for enhanced CO2 capture in an IGCC system," Energy, Elsevier, vol. 304(C).
    7. Deng, Chen & Kang, Xihui & Lin, Richen & Wu, Benteng & Ning, Xue & Wall, David & Murphy, Jerry D., 2023. "Boosting biogas production from recalcitrant lignin-based feedstock by adding lignin-derived carbonaceous materials within the anaerobic digestion process," Energy, Elsevier, vol. 278(PA).
    8. Han, Si Woo & Lee, Jeong Jae & Tokmurzin, Diyar & Lee, Seok Hyeong & Nam, Ji Young & Park, Sung Jin & Ra, Ho Won & Mun, Tae-Young & Yoon, Sang Jun & Yoon, Sung Min & Moon, Ji Hong & Lee, Jae Goo & Kim, 2022. "Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio," Energy, Elsevier, vol. 238(PC).
    9. Deshmukh, Minal & Pathan, Aadil, 2024. "Bambusa tulda: A potential feedstock for bioethanol and its blending effects on the performance of spark ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harutyunyan, Artur & Badyda, Krzysztof & Wołowicz, Marcin, 2025. "Analyzing of different repowering methods on the example of 300 MW existing steam cycle power plant using gatecycle™ software," Energy, Elsevier, vol. 314(C).
    2. Shah, Asad Abbas & Zha, Donglan, 2025. "Economy-wide estimates of the energy rebound effect in BRICS: The role of environmental regulations and economic policy uncertainty," Energy, Elsevier, vol. 320(C).
    3. Ramesh Chitharaj & Hariprasad Perumal & Mohammed Almeshaal & P. Manoj Kumar, 2025. "Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    4. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    5. Zhang, Xiao & Xue, Rui & Zhou, Runfa & Xia, Fan & Yu, Yadong & Zhang, Xiaosong, 2025. "Research on the optimal absorption refrigeration configurations of screened low-GWP organic working fluids via pinch technology," Energy, Elsevier, vol. 320(C).
    6. Daniel B. Sulis & Nathalie Lavoine & Heike Sederoff & Xiao Jiang & Barbara M. Marques & Kai Lan & Carlos Cofre-Vega & Rodolphe Barrangou & Jack P. Wang, 2025. "Advances in lignocellulosic feedstocks for bioenergy and bioproducts," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    8. Jiashuo Cui & Rongguo Yu & Huishe Wang & Yangen Wang & Jingze Tong, 2025. "A Comparative Study of Methanol and Methane Combustion in a Gas Turbine Combustor," Energies, MDPI, vol. 18(7), pages 1-17, April.
    9. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.
    10. Venizelou, Venizelos & Poullikkas, Andreas, 2025. "The effect of carbon price towards green hydrogen power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    11. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    12. Juan Córdoba & Guillermo Valencia & Branda Molina, 2025. "Energy, Exergy, and Exergo-Sustainability Analysis of a Brayton S-CO 2 /Kalina Operating in Araçuaí, Brazil, Using Solar Energy as a Thermal Source," Resources, MDPI, vol. 14(2), pages 1-19, February.
    13. Evgeniya I. Lysakova & Andrey V. Minakov & Angelica D. Skorobogatova, 2023. "Effect of Nanoparticle and Carbon Nanotube Additives on Thermal Stability of Hydrocarbon-Based Drilling Fluids," Energies, MDPI, vol. 16(19), pages 1-20, September.
    14. Zdravko Pandur & Marin Bačić & Marijan Šušnjar & Matija Landekić & Mario Šporčić & Iva Ištok, 2024. "Energy Gain and Carbon Footprint in the Production of Bioelectricity and Wood Pellets in Croatia," Sustainability, MDPI, vol. 16(9), pages 1-14, May.
    15. Serdar Ongan & Ismet Gocer & Cem Işık, 2025. "Introducing the New ESG‐Based Sustainability Uncertainty Index (ESGUI)," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(3), pages 4457-4467, June.
    16. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    17. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    18. Będowska-Sójka, Barbara & Kliber, Agata, 2024. "Do investors in dirty and clean cryptocurrencies care about energy efficiency in the same way?," Finance Research Letters, Elsevier, vol. 67(PB).
    19. Saidi, Majid & Faraji, Mehdi, 2024. "Thermochemical conversion of neem seed biomass to sustainable hydrogen and biofuels: Experimental and theoretical evaluation," Renewable Energy, Elsevier, vol. 221(C).
    20. Lindvall, Daniel & Sörqvist, Patrik & Lindeberg, Sofie & Barthel, Stephan, 2025. "The polarization of energy preferences – A study on social acceptance of wind and nuclear power in Sweden," Energy Policy, Elsevier, vol. 198(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.