IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225018572.html
   My bibliography  Save this article

Carbon-negative power generation using syngas produced from CO2-cofeeding pyrolysis of lignocellulosic biomass

Author

Listed:
  • Lee, Taewoo
  • Lee, Sangyoon
  • Tsang, Yiu Fai
  • Kwon, Eilhann E.

Abstract

Lignocellulosic biomass is typically converted into biofuels through selective conversion of saccharides in the biomass, leaving considerable amounts of lignin as waste. Pyrolysis is an alternative solution for efficient feedstock utilization; however, the fuel use of biocrude face challenges due to their compositional heterogeneity. Thus, the pyrolytic conversion of biomass into syngas could be practical for efficient combustion under manageable equivalent ratios. This study focuses on enhancing syngas production from the pyrolysis of lignocellulosic biomass, such as walnut shells (WNSs), while leveraging CO2 as a partial oxidant. During pyrolysis, CO2 reacted with WNS-derived volatile compounds, converting them into CO-rich syngas. The CO2-driven CO enhancement was observed at ≥ 520 °C, requiring measures to accelerate CO2 reaction kinetics. Therefore, operational parameters, including test temperature and CO2 composition, were scrutinized to optimize CO2 reactivity during catalytic pyrolysis. To assess industrial applicability, the resultant syngas enriched with CO was applied for power generation in a gas-turbine system. Under optimal conditions (80 vol% CO2 and 700 °C), theoretical calculations enabled to estimate 1882.5 MJ s−1 of net turbine work and 76.18 % of thermal efficiency, revealing 2.71- and 3.01-fold increases compared to reference natural gases.

Suggested Citation

  • Lee, Taewoo & Lee, Sangyoon & Tsang, Yiu Fai & Kwon, Eilhann E., 2025. "Carbon-negative power generation using syngas produced from CO2-cofeeding pyrolysis of lignocellulosic biomass," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018572
    DOI: 10.1016/j.energy.2025.136215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.