IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6875-d1250537.html
   My bibliography  Save this article

Effect of Nanoparticle and Carbon Nanotube Additives on Thermal Stability of Hydrocarbon-Based Drilling Fluids

Author

Listed:
  • Evgeniya I. Lysakova

    (Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, Krasnoyarsk 660041, Russia)

  • Andrey V. Minakov

    (Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, Krasnoyarsk 660041, Russia)

  • Angelica D. Skorobogatova

    (Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, Krasnoyarsk 660041, Russia)

Abstract

The article presents the results of experimental study on the effect of additives of silicon oxide nanoparticles, as well as single-walled and multi-walled carbon nanotubes on the colloidal stability and thermal degradation process of hydrocarbon-based drilling fluids. Such a comprehensive study of hydrocarbon-based drilling fluids was carried out for the first time. The effect of the concentration and size of silicon oxide nanoparticles, as well as the type and concentration of nanotubes on the colloidal stability of drilling fluids during thermal aging tests at different temperatures, was investigated. The nanoparticle size varied from 18 to 70 nm, and the concentration ranged from 0.25 to 2 wt.%. Single-walled and multi-walled nanotubes were studied, whose concentration varied from 0.01 to 0.5 wt.%. The thermal aging temperature varied from 30 to 150 °C. According to the results of the investigation, it was shown that the temperature stability of hydrocarbon-based drilling fluids can be significantly improved by adding the above substances. At the same time, it was shown that the use of single-walled nanotubes for thermal stabilization of drilling fluids was several times more effective than the use of multi-walled nanotubes, and tens of times more effective than the use of spherical silicon oxide nanoparticles.

Suggested Citation

  • Evgeniya I. Lysakova & Andrey V. Minakov & Angelica D. Skorobogatova, 2023. "Effect of Nanoparticle and Carbon Nanotube Additives on Thermal Stability of Hydrocarbon-Based Drilling Fluids," Energies, MDPI, vol. 16(19), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6875-:d:1250537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    3. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    4. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    5. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    6. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    7. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    8. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.
    9. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    10. Siti Rokhiyah Ahmad Usuldin & Zul Ilham & Adi Ainurzaman Jamaludin & Rahayu Ahmad & Wan Abd Al Qadr Imad Wan-Mohtar, 2023. "Enhancing Biomass-Exopolysaccharides Production of Lignosus rhinocerus in a High-Scale Stirred-Tank Bioreactor and Its Potential Lipid as Bioenergy," Energies, MDPI, vol. 16(5), pages 1-18, February.
    11. Shammya Afroze & Amal Najeebah Shalihah Binti Sofri & Md Sumon Reza & Zhanar Baktybaevna Iskakova & Asset Kabyshev & Kairat A. Kuterbekov & Kenzhebatyr Z. Bekmyrza & Lidiya Taimuratova & Mohammad Raki, 2023. "Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review," Energies, MDPI, vol. 16(23), pages 1-22, November.
    12. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    13. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    14. Igor Tatarewicz & Sławomir Skwierz & Michał Lewarski & Robert Jeszke & Maciej Pyrka & Monika Sekuła, 2023. "Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050," Energies, MDPI, vol. 16(17), pages 1-27, August.
    15. César Ramírez-Márquez & Thelma Posadas-Paredes & Alma Yunuen Raya-Tapia & José María Ponce-Ortega, 2024. "Natural Resource Optimization and Sustainability in Society 5.0: A Comprehensive Review," Resources, MDPI, vol. 13(2), pages 1-20, January.
    16. Youchan Kim & Kisung Lim & Hassan Salihi & Seongku Heo & Hyunchul Ju, 2023. "The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 17(1), pages 1-20, December.
    17. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    18. Mohammed S. Almuhayawi & Elhagag A. Hassan & Saad Almasaudi & Nidal Zabermawi & Esam I. Azhar & Azhar Najjar & Khalil Alkuwaity & Turki S. Abujamel & Turki Alamri & Steve Harakeh, 2023. "Biodiesel Production through Rhodotorula toruloides Lipids and Utilization of De-Oiled Biomass for Congo Red Removal," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    19. Tiago Bastos & Leonor C. Teixeira & João C. O. Matias & Leonel J. R. Nunes, 2023. "Agroforestry Biomass Recovery Supply Chain Management: A More Efficient Information Flow Model Based on a Web Platform," Logistics, MDPI, vol. 7(3), pages 1-15, August.
    20. Lorenzo Colleoni & Alessio Sindoni & Silvia Ravelli, 2023. "Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load," Energies, MDPI, vol. 16(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6875-:d:1250537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.