IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225015786.html
   My bibliography  Save this article

Green synthesis of manganese (Mn) doped zinc oxide (ZnO) nano-additives from biodegradable novel dragon fruit peel extracts and its effect on reactivity controlled compression ignition (RCCI) engine performance

Author

Listed:
  • Andiyappan, Kistan
  • Ramalingam, Sathiyamoorthi

Abstract

The current study demonstrates the environmentally sustainable green synthesis of manganese (Mn) doped zinc oxide (ZnO) nano-additives using biodegradable extracts from dragon fruit peels. This novel approach highlights the potential of agricultural waste while conforming to sustainable principles in the use of nanoparticles in Reactivity Controlled Compression Ignition (RCCI) engines fuelled by Azadirachta Indica methyl ester mixed with heptanol. According to the findings of the FTIR study, the band at 632 cm−1 is connected with the anti-symmetric Zn-O-Zn stretching mode. Moreover, the band that falls within the range of 480–510 cm−1 is assigned to the symmetric Zn-O-Zn and Mn-O bonds. The incorporation of MnZrO nano-additives improved performance while reducing fuel consumption. The use of manganese-doped zirconium oxide nanoparticles (Mn-ZrO NPs) led to elevated peak in-cylinder pressures, especially under high load circumstances. HC emissions decrease by 14.28 % and 19.89 % at NOME25+HEP20 with MnZrO at 50 ppm and 100 ppm, respectively, in comparison to the NOME25 blend. The Mn-ZrO NPs in NOME25 with heptanol decreased NOx emissions by 18.91 % and 21.14 % for NOME25+HEP20 with MnZrO at 50 ppm and 100 ppm, respectively. The Mn-ZrO NPs influenced the subsequent reduction of smoke emissions in the NOME25 and heptanol blends.

Suggested Citation

  • Andiyappan, Kistan & Ramalingam, Sathiyamoorthi, 2025. "Green synthesis of manganese (Mn) doped zinc oxide (ZnO) nano-additives from biodegradable novel dragon fruit peel extracts and its effect on reactivity controlled compression ignition (RCCI) engine p," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015786
    DOI: 10.1016/j.energy.2025.135936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225015786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Junheng & Liu, Yuan & Ji, Qian & Sun, Ping & Zhang, Xuchao & Wang, Xidong & Ma, Hongjie, 2023. "Effects of split injection strategy on combustion stability and GHG emissions characteristics of natural gas/diesel RCCI engine under high load," Energy, Elsevier, vol. 266(C).
    2. Li, Qiongyu & Zhao, Yanshuai & Liu, Tongzhi & Luo, Zhaolin & Luo, Kunliang & Wang, Teng, 2024. "Kinetic and optimization study of ultrasound-assisted biodiesel production from waste coconut scum oil using porous CoFe2O4@sulfonated graphene oxide magnetic nanocatalysts: CI engine approach," Renewable Energy, Elsevier, vol. 236(C).
    3. Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
    4. Vellaiyan, Suresh & Partheeban, C.M. Anand, 2020. "Combined effect of water emulsion and ZnO nanoparticle on emissions pattern of soybean biodiesel fuelled diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 1157-1166.
    5. Lang, Maochun & Su, Yan & Li, Xiaoping & Xie, Fangxi & Wang, Yaodong & Shen, Bo & Zhang, Yulin, 2024. "Numerical study on the effect of injection strategy on combustion and NO emission from different sources in a diesel/ammonia RCCI engine," Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    2. Karagoz, Mustafa & Uysal, Cuneyt & Agbulut, Umit & Saridemir, Suat, 2021. "Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles," Energy, Elsevier, vol. 214(C).
    3. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    4. Zhao, Wenbin & Wu, Haoqing & Mi, Shijie & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2023. "Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Hosseini, Seyyed Hassan & Rastegari, Hajar & Aghbashlo, Mortaza & Hajiahmad, Ali & Hosseinzadeh-Bandbafha, Homa & Mohammadi, Pouya & Jamal Sisi, Abdollah & Khalife, Esmail & Lam, Su Shiung & Pan, Junt, 2022. "Effects of metal-organic framework nanoparticles on the combustion, performance, and emission characteristics of a diesel engine," Energy, Elsevier, vol. 260(C).
    6. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    7. Wang, Yi & He, Guanzhang & Huang, Haozhong & Guo, Xiaoyu & Xing, Kongzhao & Liu, Songtao & Tu, Zhanfei & Xia, Qi, 2023. "Thermodynamic and exergy analysis of high compression ratio coupled with late intake valve closing to improve thermal efficiency of two-stage turbocharged diesel engines," Energy, Elsevier, vol. 268(C).
    8. Sokratis Stoumpos & Gerasimos Theotokatos, 2020. "Multiobjective Optimisation of a Marine Dual Fuel Engine Equipped with Exhaust Gas Recirculation and Air Bypass Systems," Energies, MDPI, vol. 13(19), pages 1-20, September.
    9. Wang, Zhongxuan & Yang, Can & Zhang, Fan & Cheng, Xiaobei, 2024. "Effects of diesel injector nozzle angle and split diesel injection strategy on combustion and emission characteristics of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 307(C).
    10. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    11. Paparao, Jami & Soundarya, N. & Murugan, S., 2023. "Advancing green technology: Experimental study on low heat rejection engine utilizing bio-based antioxidant-doped biodiesel-diesel blends and oxy-hydrogen gas," Energy, Elsevier, vol. 283(C).
    12. Liu, Junheng & Zhao, Wenyao & Ji, Qian & Wang, Zichun & Ma, Hongjie & Sun, Ping & Ao, Chengcheng, 2025. "Effects of ASR on combustion performance, GHG emissions and economic efficiency of ammonia/biodiesel dual-fuel low-carbon engine," Energy, Elsevier, vol. 319(C).
    13. Deb, Parthasarathi & Paul, Abhishek, 2024. "Enhancing the usability range of acetylene in CI engines through split injection of high-reactive fuel under RCCI operation: Optimized operability using an MCDM approach," Energy, Elsevier, vol. 308(C).
    14. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    16. Li, Yuqiang & Huang, Long & Chen, Yong & Tang, Wei, 2024. "Stratified premixed combustion optimization of a natural gas/biodiesel dual direct injection engine," Energy, Elsevier, vol. 294(C).
    17. Deng, Xiaorong & Li, Jing & Liang, Yifei & Yang, Wenming, 2023. "Dual-fuel engines fueled with n-butanol/n-octanol and n-butanol/DNBE: A comparative study of combustion and emissions characteristics," Energy, Elsevier, vol. 263(PC).
    18. Amrutsagar, Lalitrao Vijay & Kumar, Raman & Kanabar, Bhavesh & Beemkumar, N. & Sangwan, Gargi & AlHazaa, Abdulaziz & Romanovski, Valentin & Bhowmik, Abhijit, 2025. "Exploring methanol and CNG as low-reactivity fuels in reactivity controlled compression ignition for single-cylinder diesel engines: An experimental based comparative analysis at full load condition," Energy, Elsevier, vol. 324(C).
    19. Nie, Xuexuan & Bi, Yuhua & Lei, Jilin & Shen, Lizhong & Chen, Guisheng & Liu, Shaohua & Fu, Quan, 2025. "Generation characteristics of nitrogen-containing pollutants in ammonia-diesel dual-fuel engines under different operating conditions," Energy, Elsevier, vol. 324(C).
    20. Shirvani, Sasan & Shirvani, Saeid & Shamekhi, Amir H. & Reitz, Rolf & Salehi, Fatemeh, 2021. "Meeting EURO6 emission regulations by multi-objective optimization of the injection strategy of two direct injectors in a DDFS engine," Energy, Elsevier, vol. 229(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.