IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221026025.html
   My bibliography  Save this article

Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio

Author

Listed:
  • Zhao, Jinxing
  • Fu, Rui
  • Wang, Sen
  • Xu, Hongchang
  • Yuan, Zhiyuan

Abstract

HEV (hybrid electric vehicles, HEV) is considered to be one of the most important automotive technical roadmaps. Fuel efficiency level of the engine used in HEV has significant impact on vehicle fuel consumption. This paper studies the performance and fuel economy potential of applying high GCR (geometrical compression ratio, GCR) and cooled EGR in turbocharged gasoline SI engines dedicated to the use in HEVs. A 1-D simulation model for a turbocharged EGR engine has been established based on a baseline 1.5T engine. Then the effects of cooled EGR and higher GCRs on engine combustion and performance have been studied and optimized. As increasing GCR from 9.7:1 to higher values that are 12.5:1 and 14:1, the full load torque decreases obviously with the maximal relative decrease of 7.6% and 21.9% respectively mainly because EGR is used to suppress the knock reducing the volumetric efficiency. The fuel economy in the most speed and load range is greatly improved mainly because of higher constant volume degree, combustion efficiency and less heat transfer and exhaust losses. In HEVs, engines mainly work in the efficient operating range, the torque reduction can be compensated by drive motor, and an appropriately high GCR is advantageous.

Suggested Citation

  • Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026025
    DOI: 10.1016/j.energy.2021.122353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    2. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    3. Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
    4. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    5. Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Shao, Aifang & Pan, Mingzhang, 2017. "Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate," Energy, Elsevier, vol. 118(C), pages 190-196.
    6. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galindo, José & Climent, Héctor & de la Morena, Joaquín & González-Domínguez, David & Guilain, Stéphane, 2023. "Assessment of air management strategies to improve the transient response of advanced gasoline engines operating under high EGR conditions," Energy, Elsevier, vol. 262(PB).
    2. Yuji Ikeda & Nobuyuki Kawahara, 2022. "Measurement of Cyclic Variation of the Air-to-Fuel Ratio of Exhaust Gas in an SI Engine by Laser-Induced Breakdown Spectroscopy," Energies, MDPI, vol. 15(9), pages 1-14, April.
    3. Elsayed Abdelhameed & Hiroshi Tashima, 2022. "EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines," Energies, MDPI, vol. 16(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    2. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    3. Rocha, Déborah Domingos da & de Castro Radicchi, Fábio & Lopes, Gustavo Santos & Brunocilla, Marcello Francisco & Gomes, Paulo César de Ferreira & Santos, Nathalia Duarte Souza Alvarenga & Malaquias, , 2021. "Study of the water injection control parameters on combustion performance of a spark-ignition engine," Energy, Elsevier, vol. 217(C).
    4. Yang, Jie & Dong, Xue & Wu, Qiang & Xu, Min, 2019. "Effects of enhanced tumble ratios on the in-cylinder performance of a gasoline direct injection optical engine," Applied Energy, Elsevier, vol. 236(C), pages 137-146.
    5. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    6. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    7. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    8. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).
    9. Yang, Zhuyong & Miganakallu, Niranjan & Miller, Tyler & Bonfochi Vinhaes, Vinicius & Worm, Jeremy & Naber, Jeffrey & Roth, David, 2020. "Investigation of high load operation of spark-ignited over-expanded Atkinson cycle engine," Applied Energy, Elsevier, vol. 262(C).
    10. Wu, Jingtao & Zhang, Zhehao & Kang, Zhe & Deng, Jun & Li, Liguang & Wu, Zhijun, 2022. "An assessment methodology for fuel/water consumption co-optimization of a gasoline engine with port water injection," Applied Energy, Elsevier, vol. 310(C).
    11. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    12. Karthic, S.V. & Senthil Kumar, M., 2021. "Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU," Energy, Elsevier, vol. 229(C).
    13. Jacopo Zembi & Michele Battistoni & Francesco Ranuzzi & Nicolò Cavina & Matteo De Cesare, 2019. "CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions," Energies, MDPI, vol. 12(18), pages 1-22, September.
    14. Aqian Li & Zhaolei Zheng, 2020. "Effect of Spark Ignition Timing and Water Injection Temperature on the Knock Combustion of a GDI Engine," Energies, MDPI, vol. 13(18), pages 1-24, September.
    15. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    16. Lijia Zhong & Changwen Liu, 2019. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation," Energies, MDPI, vol. 12(20), pages 1-20, October.
    17. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    18. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    19. Hazar, Hanbey & Gul, Hakan, 2016. "Modeling analysis of chrome carbide (Cr3C2) coating on parts of combustion chamber of a SI engine," Energy, Elsevier, vol. 115(P1), pages 76-87.
    20. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.