IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp137-146.html
   My bibliography  Save this article

Effects of enhanced tumble ratios on the in-cylinder performance of a gasoline direct injection optical engine

Author

Listed:
  • Yang, Jie
  • Dong, Xue
  • Wu, Qiang
  • Xu, Min

Abstract

Improving engine efficiency and reducing pollutant emissions are the everlasting pursuit for engine researchers. While increasing tumble ratio of the engine intake airflow was shown to benefit the engine performance, rarely any systematic study has been carried out on the effect of tumble flow on engine in-cylinder performance and its mechanism. To fill in this gap, we designed tumble deflectors with desired tumble ratio using computer-aided design and computational fluid dynamics in this work. Afterwards, tumble deflectors with a tumble ratio of 1.5 and 2.2 were 3D printed. Finally firing tests of the optical engine installed with different tumble deflectors were performed. A high-speed color camera and pressure transducer were used to record crank angle-resolved flame natural luminosity and cylinder pressure. Results show that higher tumble ratio leads to faster blue flame development and less yellow flame generation, which indicates an increase in flame burning rate and a decrease of the soot formation. This is closely related to the enhanced turbulence kinetic energy before ignition as was shown in the computational fluid dynamics simulation. Besides, the engine effective pressure is increased by higher tumble ratio, but the cycle to cycle variation of flame characteristics first decreases then increases with tumble ratio.

Suggested Citation

  • Yang, Jie & Dong, Xue & Wu, Qiang & Xu, Min, 2019. "Effects of enhanced tumble ratios on the in-cylinder performance of a gasoline direct injection optical engine," Applied Energy, Elsevier, vol. 236(C), pages 137-146.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:137-146
    DOI: 10.1016/j.apenergy.2018.11.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    2. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    3. Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
    4. Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Shao, Aifang & Pan, Mingzhang, 2017. "Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate," Energy, Elsevier, vol. 118(C), pages 190-196.
    5. Castiglione, Teresa & Pizzonia, Francesco & Piccione, Rocco & Bova, Sergio, 2016. "Detecting the onset of nucleate boiling in internal combustion engines," Applied Energy, Elsevier, vol. 164(C), pages 332-340.
    6. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    7. Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
    8. Li, Tie & Yin, Tao & Wang, Bin, 2017. "Anatomy of the cooled EGR effects on soot emission reduction in boosted spark-ignited direct-injection engines," Applied Energy, Elsevier, vol. 190(C), pages 43-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wahono, Bambang & Setiawan, Ardhika & Lim, Ocktaeck, 2021. "Effect of the intake port flow direction on the stability and characteristics of the in-cylinder flow field of a small motorcycle engine," Applied Energy, Elsevier, vol. 288(C).
    2. Zhou, Xianjie & Chen, Zheng & Zou, Peng & Liu, Jingping & Duan, Xiongbo & Qin, Tao & Zhang, Shiheng & Shen, Dazi, 2020. "Combustion and energy balance analysis of an unthrottled gasoline engine equipped with innovative variable valvetrain," Applied Energy, Elsevier, vol. 268(C).
    3. Lei Zhou & Xiaojun Zhang & Lijia Zhong & Jie Yu, 2020. "Effects of Flame Propagation Velocity and Turbulence Intensity on End-Gas Auto-Ignition in a Spark Ignition Gasoline Engine," Energies, MDPI, vol. 13(19), pages 1-23, September.
    4. Jana Hoffmann & Niklas Mirsch & Walter Vera-Tudela & Dario Wüthrich & Jorim Rosenberg & Marco Günther & Stefan Pischinger & Daniel A. Weiss & Kai Herrmann, 2023. "Flow Field Investigation of a Single Engine Valve Using PIV, POD, and LES," Energies, MDPI, vol. 16(5), pages 1-31, March.
    5. Jana Hoffmann & Walter Vera-Tudela & Niklas Mirsch & Dario Wüthrich & Bruno Schneider & Marco Günther & Stefan Pischinger & Daniel A. Weiss & Kai Herrmann, 2023. "Investigation of Flow Fields Emanating from Two Parallel Inlet Valves Using LES, PIV, and POD," Energies, MDPI, vol. 16(19), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    2. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Huang, Shuai & Li, Tie & Zhang, Zhifei & Ma, Pengfei, 2019. "Rotational and vibrational temperatures in the spark plasma by various discharge energies and strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    5. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    6. Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
    7. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    8. Zhou, Xianjie & Chen, Zheng & Zou, Peng & Liu, Jingping & Duan, Xiongbo & Qin, Tao & Zhang, Shiheng & Shen, Dazi, 2020. "Combustion and energy balance analysis of an unthrottled gasoline engine equipped with innovative variable valvetrain," Applied Energy, Elsevier, vol. 268(C).
    9. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    10. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    11. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    12. Diego Perrone & Teresa Castiglione & Pietropaolo Morrone & Ferdinando Pantano & Sergio Bova, 2023. "Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification," Energies, MDPI, vol. 16(19), pages 1-22, September.
    13. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    14. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    15. Lijia Zhong & Changwen Liu, 2019. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation," Energies, MDPI, vol. 12(20), pages 1-20, October.
    16. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    17. Hazar, Hanbey & Gul, Hakan, 2016. "Modeling analysis of chrome carbide (Cr3C2) coating on parts of combustion chamber of a SI engine," Energy, Elsevier, vol. 115(P1), pages 76-87.
    18. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    19. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    20. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:137-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.