IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008850.html
   My bibliography  Save this article

Sustainable lithium supply for electric vehicle development in China towards carbon neutrality

Author

Listed:
  • Zhang, Qi
  • Huang, Zhenyue
  • Liu, Boyu
  • Ma, Tian

Abstract

Global carbon neutrality efforts have spurred the electric vehicle (EV) boom, increasing the demand for lithium. As the global leader in EV adoption and the largest consumer of lithium, China faces a severe lithium shortage, characterized by high import dependence. Therefore, a simulation framework combining Material Flow Analysis (MFA) and nonlinear optimization was developed to assess sustainable lithium supply for EV in China. The obtained results show that: i) By 2050, annual EV sales are projected to reach 35.2 million, 18 times of the 2020 level. During 2024 to 2050, the maximum difference in cumulative lithium demand across different scenarios for EV market diffusion and battery market structure reaches 8.8 and 23.2 million tons of lithium carbonate equivalent (Mt LCE), respectively. ii) Overall import dependence is expected to gradually decline from 75.7% in 2024 to an average of 16.3% by 2050 across various scenarios, primarily owing to the lithium recycling increase. Lithium shortages will happen between 2030 and 2040, with the most severe annual shortage reaching 46.9% of demand under trade protectionism scenarios. iii) Eliminating potential lithium shortages in China will depend on the implementation of countermeasures, such as production incentives, recycling promotion, adoption of alternatives, and resource conservations.

Suggested Citation

  • Zhang, Qi & Huang, Zhenyue & Liu, Boyu & Ma, Tian, 2025. "Sustainable lithium supply for electric vehicle development in China towards carbon neutrality," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008850
    DOI: 10.1016/j.energy.2025.135243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Han Hao & Yong Geng & James E. Tate & Feiqi Liu & Kangda Chen & Xin Sun & Zongwei Liu & Fuquan Zhao, 2019. "Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Golmohammadzadeh, Rabeeh & Faraji, Fariborz & Jong, Brian & Pozo-Gonzalo, Cristina & Banerjee, Parama Chakraborty, 2022. "Current challenges and future opportunities toward recycling of spent lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Anthony L. Cheng & Erica R. H. Fuchs & Jeremy J. Michalek, 2024. "US industrial policy may reduce electric vehicle battery supply chain vulnerabilities and influence technology choice," Nature Energy, Nature, vol. 9(12), pages 1561-1570, December.
    5. Mario Herberz & Ulf J. J. Hahnel & Tobias Brosch, 2022. "Counteracting electric vehicle range concern with a scalable behavioural intervention," Nature Energy, Nature, vol. 7(6), pages 503-510, June.
    6. Geng, Jingxuan & Gao, Suofen & Sun, Xin & Liu, Zongwei & Zhao, Fuquan & Hao, Han, 2022. "Potential of electric vehicle batteries second use in energy storage systems: The case of China," Energy, Elsevier, vol. 253(C).
    7. Robert M. Solow & Frederic Y. Wan, 1976. "Extraction Costs in the Theory of Exhaustible Resources," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 359-370, Autumn.
    8. Knut Einar Rosendahl & Diana Roa Rubiano, 2019. "How Effective is Lithium Recycling as a Remedy for Resource Scarcity?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 985-1010, November.
    9. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    10. Liu, Boyu & Zhang, Qi & Liu, Jiangfeng & Hao, Yawei & Tang, Yanyan & Li, Yaoming, 2022. "The impacts of critical metal shortage on China's electric vehicle industry development and countermeasure policies," Energy, Elsevier, vol. 248(C).
    11. Zhou, Na & Su, Hui & Wu, Qiaosheng & Hu, Shougeng & Xu, Deyi & Yang, Danhui & Cheng, Jinhua, 2022. "China's lithium supply chain: Security dynamics and policy countermeasures," Resources Policy, Elsevier, vol. 78(C).
    12. Anqi Zeng & Wu Chen & Kasper Dalgas Rasmussen & Xuehong Zhu & Maren Lundhaug & Daniel B. Müller & Juan Tan & Jakob K. Keiding & Litao Liu & Tao Dai & Anjian Wang & Gang Liu, 2022. "Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Xin Sun & Han Hao & Clara Galeazzi & Tomer Fishman & Dengye Xun & Magnus Ericsson & Gang Liu & I-Yun L. Hsieh & Zongwei Liu & Fuquan Zhao, 2024. "Reducing supply risk of critical materials for clean energy via foreign direct investment," Nature Sustainability, Nature, vol. 7(5), pages 672-681, May.
    14. Jean de Beir & Thai Ha-Huy & Sylvain Sourisseau, 2023. "Recycling vs Mining: Competition for Market Shares, Collusion for Market Power," Revue économique, Presses de Sciences-Po, vol. 74(1), pages 81-113.
    15. Jin, Pengfei & Wang, Saige & Meng, Zheng & Chen, Bin, 2023. "China's lithium supply chains: Network evolution and resilience assessment," Resources Policy, Elsevier, vol. 87(PB).
    16. Hanjiro Ambrose & Alissa Kendall, 2020. "Understanding the future of lithium: Part 1, resource model," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 80-89, February.
    17. Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2017. "Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 208-217.
    18. Han, Sun & Zhenghao, Meng & Meilin, Li & Xiaohui, Yang & Xiaoxue, Wang, 2023. "Global supply sustainability assessment of critical metals for clean energy technology," Resources Policy, Elsevier, vol. 85(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Yuning & Yang, Honghua & Yang, Xingyuan & Arras, Maximilian & Chong, Chin Hao & Ma, Linwei & Li, Zheng, 2025. "A holistic picture of the carbon emission responsibility in China's aluminium supply chain: Production-side flow analyses, consumption-side responsibility allocation, and driving factor analysis," Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tian & Zhang, Qi & Tang, Yanyan & Liu, Boyu & Li, Yan & Wang, Lu, 2024. "A review on the industrial chain of recycling critical metals from electric vehicle batteries: Current status, challenges, and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    2. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    3. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    4. Jiang, Hong-Dian & Liu, Yan-xin & Wang, Hanxu & Li, Huajiao & Jiang, Yutong, 2024. "An economy-wide and environmental assessment of an imported supply shortage for iron ore: The case of China," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 606-617.
    5. Ruifei Ma & Shengyu Tao & Xin Sun & Yifang Ren & Chongbo Sun & Guanjun Ji & Jiahe Xu & Xuecen Wang & Xuan Zhang & Qiuwei Wu & Guangmin Zhou, 2024. "Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Zhou, Na & Su, Hui & Wu, Qiaosheng & Hu, Shougeng & Xu, Deyi & Yang, Danhui & Cheng, Jinhua, 2022. "China's lithium supply chain: Security dynamics and policy countermeasures," Resources Policy, Elsevier, vol. 78(C).
    8. Mao, Ning & Gadkari, Siddharth & Wang, Zhirong & Zhang, Teng & Bai, Jinglong & Cai, Qiong, 2023. "A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions," Energy, Elsevier, vol. 278(PB).
    9. Sun, Xiaotian & Fang, Wei & Gao, Xiangyun & An, Haizhong & Si, Jingjian & Wei, Hongyu, 2024. "Dynamic interactions among new energy metals and price adjustment strategies: A cross-industry chain perspective," Energy, Elsevier, vol. 303(C).
    10. Jin, Pengfei & Wang, Saige & Meng, Zheng & Chen, Bin, 2023. "China's lithium supply chains: Network evolution and resilience assessment," Resources Policy, Elsevier, vol. 87(PB).
    11. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Niri, Anahita Jannesar & Poelzer, Gregory A. & Pettersson, Maria & Rosenkranz, Jan, 2025. "Evaluating battery minerals future supply through production predicting in the context of the green energy transition," Resources Policy, Elsevier, vol. 103(C).
    13. Diana Roa & Knut Einar Rosendahl, 2023. "Policies for Material Circularity: the Case of Lithium," Circular Economy and Sustainability, Springer, vol. 3(1), pages 373-405, March.
    14. Devarajan, Shantayanan & Fisher, Anthony C, 1981. "Hotelling's "Economics of Exhaustible Resources": Fifty Years Later," Journal of Economic Literature, American Economic Association, vol. 19(1), pages 65-73, March.
    15. Ulises Martín Casado & Facundo Ignacio Altuna & Luis Alejandro Miccio, 2025. "A Review on the Role of Crosslinked Polymers in Renewable Energy: Complex Network Analysis of Innovations in Sustainability," Sustainability, MDPI, vol. 17(10), pages 1-31, May.
    16. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    17. Kumar, Anil & Shemi, Alan & Chipise, Liberty & Moodley, Sanchia & Yah, Clarence S. & Ndlovu, Sehliselo, 2023. "Can microbial Bio-CN be a sustainable alternative to the chemical cyanidation of precious metals? An update and way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    19. Sun, Han & Yuan, Ziyi & Wang, Xiaoxue & Chen, Lu & Zha, Zhiyun, 2025. "The security evaluation of nickel industrial and supply chains based on the NDEA window model," Resources Policy, Elsevier, vol. 100(C).
    20. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.