IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225007583.html
   My bibliography  Save this article

Numerical and experimental investigation on flow and heat transfer characteristics of trapezoidal regenerator in Stirling generator

Author

Listed:
  • Yang, Juhui
  • Huang, Wen
  • Feng, Yu
  • Jin, Zhangtao
  • Wu, Hao
  • Shuai, Zhikang

Abstract

Stirling generator is one of the best choices for achieving sustainable development, which has attracted much attention for its high efficiency, high reliability and fuel adaptability. As the core heat exchange component of Stirling generator, regenerator has great influence on its output power and efficiency. However, there is an inherent contradiction between flow resistance and heat storage capacity in the regenerator. Large flow resistance or insufficient heat storage capacity will lead to deterioration Stirling generator performance. This paper proposes an innovative trapezoidal regenerator structure that trade off flow resistance and heat storage capacity. The trapezoidal regenerator consists of straight channels and corners. Among them, the straight channel has a regular flow space distribution, which reduces the flow resistance. The working gas mixing at the corners forms a vortex, leading to enhanced heat transfer. This structure effectively balances the flow and heat transfer characteristics of regenerator. Through numerical simulation and experiment test, the relationship between Reynolds number with friction coefficient and Nusselt number is measured. The results show that the NPH/NTU of trapezoidal regenerator is only 41 % of woven screen and random fiber, which has the best figure of merit. These studies prove the potential of trapezoidal regenerator in Stirling generator.

Suggested Citation

  • Yang, Juhui & Huang, Wen & Feng, Yu & Jin, Zhangtao & Wu, Hao & Shuai, Zhikang, 2025. "Numerical and experimental investigation on flow and heat transfer characteristics of trapezoidal regenerator in Stirling generator," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007583
    DOI: 10.1016/j.energy.2025.135116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    2. Ma, Yuan & Xie, Gongnan & Hooman, Kamel, 2022. "Review of printed circuit heat exchangers and its applications in solar thermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Gheith, Ramla & Aloui, Fethi & Ben Nasrallah, Sassi, 2015. "Determination of adequate regenerator for a Gamma-type Stirling engine," Applied Energy, Elsevier, vol. 139(C), pages 272-280.
    4. Xin, Feng & Tang, Bin & Zhao, Bin & Yang, Yanfeng & Liu, Wei & Liu, Zhichun, 2024. "Heat transfer enhancement of a Stirling engine heating tube with three-pronged slant rods under oscillatory flow," Energy, Elsevier, vol. 301(C).
    5. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2024. "Dynamic simulation and analysis of transient characteristics of a thermal-to-electrical conversion system based on supercritical CO2 Brayton cycle in hypersonic vehicles," Applied Energy, Elsevier, vol. 359(C).
    6. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    7. Chen, Pengfan & Zhong, Geyu & Niu, Yafeng & Liu, Yingwen, 2022. "Performance optimization of a free piston stirling engine using multi-section regenerators based on the response surface methodology," Energy, Elsevier, vol. 261(PB).
    8. Hu, Yiwei & Luo, Kaiqi & Zhao, Dan & Chi, Jiaxin & Chen, Geng & Chen, Yuanhang & Luo, Ercang & Xu, Jingyuan, 2024. "Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings," Energy, Elsevier, vol. 298(C).
    9. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    10. Costa, Sol-Carolina & Tutar, Mustafa & Barreno, Igor & Esnaola, Jon-Ander & Barrutia, Haritz & García, David & González, Miguel-Angel & Prieto, Jesús-Ignacio, 2014. "Experimental and numerical flow investigation of Stirling engine regenerator," Energy, Elsevier, vol. 72(C), pages 800-812.
    11. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    12. Nielsen, Anders S. & York, Brayden T. & MacDonald, Brendan D., 2019. "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Chi, Chunyun & Li, Ruijie & Mou, Jian & Lin, Mingqiang & Jiao, Kexin & Yang, Mingzhuo & Liu, He & Hong, Guotong, 2024. "Theoretical and experimental study of free piston Stirling generator for high cold end temperatures," Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    2. Al-Nimr, Moh'd & Khashan, Saud A. & Al-Oqla, Hashem, 2023. "Novel techniques to enhance the performance of Stirling engines integrated with solar systems," Renewable Energy, Elsevier, vol. 202(C), pages 894-906.
    3. Al-Nimr, Moh'd & Khashan, Saud & Al-Oqla, Hashem, 2023. "A novel hybrid pyroelectric-Stirling engine power generation system," Energy, Elsevier, vol. 282(C).
    4. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    5. Xin, Feng & Xu, Bowen & Dai, Dongdong & Liu, Wei & Liu, Zhichun, 2024. "Evaluation of heat transfer enhancement effect at the hot/cold end of a Stirling engine using performance improvement factor," Energy, Elsevier, vol. 311(C).
    6. Xin, Feng & Tang, Bin & Sun, Yuting & Zeng, Zhiwei & Wang, Wei & Cheng, Shan & Zhao, Bin, 2025. "Study on heat transfer enhancement by multiple leaf-like insert in a heating tube under oscillating flow," Energy, Elsevier, vol. 327(C).
    7. Xiao, Wang & Chen, Lei & Yu, Guoyao & Ma, Zhuang & Ma, Ying & Xue, Jianhua & Cheng, Yangbin & Luo, Ercang, 2024. "Design and experimental study of a 300 We class combustion-driven high frequency free-piston Stirling electric generator," Energy, Elsevier, vol. 300(C).
    8. Chen, Pengfan & Zhong, Geyu & Niu, Yafeng & Liu, Yingwen, 2022. "Performance optimization of a free piston stirling engine using multi-section regenerators based on the response surface methodology," Energy, Elsevier, vol. 261(PB).
    9. Zhang, Yuhao & Liao, Yusheng & Qu, Yuanshu & Liu, Jingwen & Lu, Daogang & Xia, Yan & Ou, Xuedong, 2025. "Dynamic thermal characteristics analysis of integrated space nuclear reactor with core and Stirling power conversion components," Energy, Elsevier, vol. 315(C).
    10. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    11. Zhu, Qilu & Zhang, Limin & Chen, Yuanhang & Luo, Jing & Hu, Jianying & Luo, Ercang, 2025. "Multi-domain physical modeling and dynamic performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 320(C).
    12. Wang, Haitao & Chen, Yanyan & Luo, Jing & Zhang, Limin & Kang, Huifang & Luo, Ercang & Zhu, Shunmin, 2025. "A novel high-power free-piston stirling engine generator with integrated heat pipes for thermal-to-electric conversion of clean energy," Energy, Elsevier, vol. 314(C).
    13. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    14. Socci, Luca & Rocchetti, Andrea & Verzino, Antonio & Zini, Andrea & Talluri, Lorenzo, 2024. "Enhancing third-generation district heating networks with data centre waste heat recovery: analysis of a case study in Italy," Energy, Elsevier, vol. 313(C).
    15. Abouzied, Amr S. & Farouk, Naeim & Shaban, Mohamed & Abed, Azher M. & Alhomayani, Fahad M. & Formanova, Shoira & Khan, Mohammad Nadeem & Alturise, Fahad & Alkhalaf, Salem & Albalawi, Hind, 2025. "Optimization of Ex/energy efficiencies in an integrated compressed air energy storage system (CAES) using machine learning algorithms: A multi-objective approach based on analysis of variance," Energy, Elsevier, vol. 322(C).
    16. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    17. Sun, Wenpeng & Chen, Geng & Tang, Lihua & Aw, Kean Chin, 2025. "Mode switching between electric-driven thermoacoustic refrigerator and heat pump," Energy, Elsevier, vol. 317(C).
    18. Lazaros Aresti & Gregoris Panayiotou, 2025. "Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article," Energies, MDPI, vol. 18(8), pages 1-7, April.
    19. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    20. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.