IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6173-d1695233.html
   My bibliography  Save this article

Research on the Configurations and Control Methods of a Hybrid System of Air-Source Heat Pumps and Gas Boilers for Space Heating: Simulation and Comparative Analysis

Author

Listed:
  • Yangyang Mao

    (Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Minghui Ma

    (School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China)

  • Shenxin Chen

    (Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Huajian Zhan

    (Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yuwei Yuan

    (Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yanhui Wang

    (Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jiewen Deng

    (Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Chenwei Peng

    (Department of Building Science, Tsinghua University, Beijing 100084, China)

Abstract

This study analyzes the configurations and control strategies of hybrid heating systems of air-source heat pumps (ASHPs) and gas boilers for space heating in different climatic regions in China, with the aim of improving the comprehensive energy efficiency. Parallel and series hybrid modes were proposed, and simulation analysis was conducted to analyze the energy performance, energy costs, and CO 2 emissions of different hybrid systems. The results show that the supply water temperatures of ASHPs in series mode are lower than that of ASHPs in parallel mode; thus, the COP of ASHPs in series mode reached 2.73 and was higher than the COP of ASHPs in parallel mode with a value of 2.65. Then, the optimal intermediate temperatures of hybrid system in series mode were analyzed, so as to guide the system control. The results show that compared with series mode with a fixed 50% load distribution, the operational costs and CO 2 emissions were reduced by 10.0% and 10.4% in Harbin, reduced by 6.4% and 8.3% in Beijing, and reduced by 10.0% and 15.1% in Wuhan. Additionally, the optimal intermediate temperature was affected by the building load ratio, supply water temperature, ambient air temperature, and the electricity–gas price ratio. The series-hybrid ASHP and gas boiler system achieves remarkable energy and cost savings across different climatic conditions, providing a scientific basis for promoting low-carbon heating solutions.

Suggested Citation

  • Yangyang Mao & Minghui Ma & Shenxin Chen & Huajian Zhan & Yuwei Yuan & Yanhui Wang & Jiewen Deng & Chenwei Peng, 2025. "Research on the Configurations and Control Methods of a Hybrid System of Air-Source Heat Pumps and Gas Boilers for Space Heating: Simulation and Comparative Analysis," Sustainability, MDPI, vol. 17(13), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6173-:d:1695233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Na & Chu, Shangling & Cheng, Chao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2024. "Performance research and multi-objective optimization of concentrating photovoltaic/thermal coupled air source heat pump heating system," Energy, Elsevier, vol. 296(C).
    2. Wei, Wenzhe & Ni, Long & Li, Shuyi & Wang, Wei & Yao, Yang & Xu, Laifu & Yang, Yahua, 2020. "A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load," Renewable Energy, Elsevier, vol. 161(C), pages 184-199.
    3. Zheng, Zhihang & Jin, Yipeng & Zhou, Jin & Yang, Ying & Xu, Feng & Liu, Hongcheng, 2025. "A novel dynamic operation method for solar assisted air source heat pump systems: Optimization control and performance analysis," Energy, Elsevier, vol. 316(C).
    4. Deng, Jiewen & Peng, Chenwei & Su, Yangyang & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng, 2023. "Research on the heat storage characteristic of deep borehole heat exchangers under intermittent operation mode: Simulation analysis and comparative study," Energy, Elsevier, vol. 282(C).
    5. Yu-Jin Hwang & Jae-Weon Jeong, 2021. "Energy Saving Potential of Radiant Floor Heating Assisted by an Air Source Heat Pump in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-14, March.
    6. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    7. Olympios, Andreas V. & Pantaleo, Antonio M. & Sapin, Paul & Markides, Christos N., 2020. "On the value of combined heat and power (CHP) systems and heat pumps incentralised and distributed heating systems: Lessons from multi-fidelitymodelling approaches," Applied Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroki Ikeda & Yasushi Ooi & Takashi Nakaya, 2021. "Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House," Energies, MDPI, vol. 14(21), pages 1-29, October.
    2. Zeng, Kuo & Gao, Junjie & Lu, Yongwen & Zuo, Hongyang & Chi, Bowen & Fang, Zheyu & Li, Jun & Xu, Huaqian & Li, Beiyang & Yang, Haiping & Chen, Hanping, 2024. "Comprehensive enhancement of melting-solidifying process in latent heat storage based on eccentric fin-foam combination," Energy, Elsevier, vol. 313(C).
    3. Maria Alessandra Ancona & Michele Bianchi & Lisa Branchini & Andrea De Pascale & Francesco Melino & Antonio Peretto & Noemi Torricelli, 2021. "Systematic Comparison of ORC and s-CO 2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines," Energies, MDPI, vol. 14(12), pages 1-22, June.
    4. Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
    5. Socci, Luca & Rocchetti, Andrea & Verzino, Antonio & Zini, Andrea & Talluri, Lorenzo, 2024. "Enhancing third-generation district heating networks with data centre waste heat recovery: analysis of a case study in Italy," Energy, Elsevier, vol. 313(C).
    6. Matyska, Ctirad & Zábranová, Eliška, 2024. "Seasonal energy extraction and storage by deep coaxial borehole heat exchangers in a layered ground," Renewable Energy, Elsevier, vol. 237(PA).
    7. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    8. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    9. Abouzied, Amr S. & Farouk, Naeim & Shaban, Mohamed & Abed, Azher M. & Alhomayani, Fahad M. & Formanova, Shoira & Khan, Mohammad Nadeem & Alturise, Fahad & Alkhalaf, Salem & Albalawi, Hind, 2025. "Optimization of Ex/energy efficiencies in an integrated compressed air energy storage system (CAES) using machine learning algorithms: A multi-objective approach based on analysis of variance," Energy, Elsevier, vol. 322(C).
    10. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    11. Lazaros Aresti & Gregoris Panayiotou, 2025. "Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article," Energies, MDPI, vol. 18(8), pages 1-7, April.
    12. Praveen Cheekatamarla & Ahmad Abu-Heiba, 2020. "A Comprehensive Review and Qualitative Analysis of Micro-Combined Heat and Power Modeling Approaches," Energies, MDPI, vol. 13(14), pages 1-26, July.
    13. Jouhara, Hussam & Delpech, Bertrand & Almahmoud, Sulaiman & Chauhan, Amisha & Al-Mansour, Fouad & Pusnik, Matevz & Buhvald, Alojz & Plesnik, Kristijan, 2025. "Experimental investigation on an advanced thermosiphon-based heat exchanger for enhanced waste heat recovery in the steel industry," Energy, Elsevier, vol. 315(C).
    14. Chenwei Peng & Jiewen Deng & Sishi Li & Xiaochao Guo & Yangyang Su & Yanhui Wang & Wenbo Qiang & Minghui Ma & Qingpeng Wei & Hui Zhang & Donglin Xie, 2024. "How to Evaluate the Operating Performance of Mid-Deep Geothermal Heat Pump Systems (MD-GHPs): A Study on a Multistage Evaluation Index System," Sustainability, MDPI, vol. 16(22), pages 1-29, November.
    15. Yilmaz, Ceyhun & Arslan, Muhammed & Ozdemir, Safiye Nur & Tokgoz, Nehir, 2025. "Thermal design and genetic algorithm optimization of geothermal and solar-assisted multi-energy and hydrogen production using artificial neural networks," Energy, Elsevier, vol. 324(C).
    16. Wang, Shuye & de Souza, Clarice Bleil & Golubchikov, Oleg, 2025. "Recent advances in decarbonising heating in rural China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    17. Ryan, Erich & McDaniel, Benjamin & Kosanovic, Dragoljub, 2022. "Application of thermal energy storage with electrified heating and cooling in a cold climate," Applied Energy, Elsevier, vol. 328(C).
    18. Zhou, Dan & Zhang, Yi & Wu, Yuting & Wang, Yunfei & Zhang, Guanmin, 2024. "Research on gas-liquid interface parameters related to thermal performance of frost-free evaporator of air source heat pump," Renewable Energy, Elsevier, vol. 237(PB).
    19. Zhang, Nan & Liu, Gang & Man, Xiaoxin & Wang, Qingqin, 2025. "Climate and resource characteristics-based zoning of heat source retrofit for heating systems and implications for heat consumption of urban settlements in cold regions of China," Energy, Elsevier, vol. 314(C).
    20. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Kai & Wu, Jiale & Xu, Jiamin & Wang, Jiachen, 2024. "Simplified method and numerical simulation analysis of pipe-group long-term heat transfer in deep-ground heat exchangers," Energy, Elsevier, vol. 299(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6173-:d:1695233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.