IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224010971.html
   My bibliography  Save this article

Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings

Author

Listed:
  • Hu, Yiwei
  • Luo, Kaiqi
  • Zhao, Dan
  • Chi, Jiaxin
  • Chen, Geng
  • Chen, Yuanhang
  • Luo, Ercang
  • Xu, Jingyuan

Abstract

Effectively utilizing low-grade thermal energy is a promising approach to mitigating greenhouse gas emissions while reducing the burden on centralized power grids. Current thermoacoustic heat pumps and power generators face challenges such as high onset temperature differentials and low performance. This paper addresses these challenges by introducing a gas-liquid resonator into a thermoacoustic combined heat and power systems to recover low-grade thermal energy in residential buildings. Through Sage modeling and calculations, the internal characteristics of the proposed system and its output performance under different operating conditions are explored. At a heating temperature of 350 °C, the system can generate 6.4 kW of output thermal power, 0.9 kW of electricity, and overall exergy efficiency is 79.3 %. Combining neural network models with case studies conducted in Spain and Finland, the system can annually save 5.6 MWh and 20.7 MWh in fuel energy, reduce emissions of 1374 kg and 5180 kg of carbon dioxide, and save a total cost of €611 and €2324, respectively. Furthermore, comparisons with other emerging micro-CHP systems highlight the efficiency of the proposed system. These results indicate the high potential of thermoacoustic combined heat and power systems in recovering low-grade thermal energy and achieving energy savings and emission reductions.

Suggested Citation

  • Hu, Yiwei & Luo, Kaiqi & Zhao, Dan & Chi, Jiaxin & Chen, Geng & Chen, Yuanhang & Luo, Ercang & Xu, Jingyuan, 2024. "Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010971
    DOI: 10.1016/j.energy.2024.131324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.