IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v313y2022ics030626192200229x.html
   My bibliography  Save this article

A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction

Author

Listed:
  • Wang, Xin
  • Xu, Jingyuan
  • Wu, Zhanghua
  • Luo, Ercang

Abstract

A small-scale, energy-efficient and reliable refrigeration system is required for on-site liquefaction of natural gas in distributed stations. The thermoacoustic refrigerator is regarded as one of the most promising options to meet this demand. However, existing work on thermoacoustic refrigerators to date has been limited to a single cooling temperature only at the liquefaction temperature, without consideration of the significant irreversible losses that arise from the large temperature difference between the natural gas being cooled and the working gas being heated in the heat exchanger. To overcome this limitation, this paper proposes a novel multi-stage thermoacoustic refrigerator with multiple-bypass expansion cooling configuration that is capable of cascade liquefaction of natural gas. The irreversible losses can be reduced greatly by organizing the decreasing temperatures of the natural gas to occur across heat exchangers with decreasingly lower temperatures to achieve smaller temperature drops. Theoretical analyses were performed on the working characteristics of both two-stage and three-stage systems and comparisons are made with the conventional single-stage system. The system performances are compared based on whether the system covers only the sensible heat or the combined sensible and the latent heat of natural gas. Results show that the proposed system improves the relative liquefaction efficiency if it is used to cover only sensible heat of natural gas (improved by 57.0%) or to cover the combined sensible and latent heat of natural gas (improved by 12.6%), when compared to conventional single-stage system. These findings demonstrate the system’s promise for use in natural gas liquefaction applications.

Suggested Citation

  • Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:appene:v:313:y:2022:i:c:s030626192200229x
    DOI: 10.1016/j.apenergy.2022.118780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200229X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    2. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
    3. Xu, Jingyuan & Zhang, Limin & Hu, Jianying & Wu, Zhanghua & Bi, Tianjiao & Dai, Wei & Luo, Ercang, 2016. "An efficient looped multiple-stage thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas," Energy, Elsevier, vol. 101(C), pages 427-433.
    4. Sanavandi, Hamid & Mafi, Mostafa & Ziabasharhagh, Masoud, 2019. "Normalized sensitivity analysis of LNG processes - Case studies: Cascade and single mixed refrigerant systems," Energy, Elsevier, vol. 188(C).
    5. Song, Chang & Tan, Shuai & Qu, Fengcheng & Liu, Weidong & Wu, Yong, 2019. "Optimization of mixed refrigerant system for LNG processes through graphically reducing exergy destruction of cryogenic heat exchangers," Energy, Elsevier, vol. 168(C), pages 200-206.
    6. Hou, Mingyu & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2018. "A thermoacoustic Stirling electrical generator for cold exergy recovery of liquefied nature gas," Applied Energy, Elsevier, vol. 226(C), pages 389-396.
    7. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    8. Hu, J.Y. & Luo, E.C. & Dai, W. & Zhang, L.M., 2017. "Parameter sensitivity analysis of duplex Stirling coolers," Applied Energy, Elsevier, vol. 190(C), pages 1039-1046.
    9. Ghorbani, Bahram & Hamedi, Mohammad-Hossein & Amidpour, Majid & Mehrpooya, Mehdi, 2016. "Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU))," Energy, Elsevier, vol. 115(P1), pages 88-106.
    10. Li, Xiaowei & Liu, Bin & Yu, Guoyao & Dai, Wei & Hu, Jianying & Luo, Ercang & Li, Haibing, 2017. "Experimental validation and numeric optimization of a resonance tube-coupled duplex Stirling cooler," Applied Energy, Elsevier, vol. 207(C), pages 604-612.
    11. Li, Linyu & Wu, Zhanghua & Hu, Jianying & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2016. "A novel heat-driven thermoacoustic natural gas liquefaction system. Part I: Coupling between refrigerator and linear motor," Energy, Elsevier, vol. 117(P2), pages 523-529.
    12. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2020. "Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 271(C).
    13. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
    14. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    2. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    2. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    3. Sun, Haojie & Yu, Guoyao & Dai, Wei & Zhang, Limin & Luo, Ercang, 2022. "Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system," Applied Energy, Elsevier, vol. 322(C).
    4. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2020. "Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 271(C).
    5. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
    6. Chang, Depeng & Hu, Jianying & Sun, Yanlei & Zhang, Limin & Chen, Yanyan & Luo, Ercang, 2023. "Numerical investigation on key parameters of a double-acting free piston Stirling generator," Energy, Elsevier, vol. 278(PB).
    7. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    8. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    9. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2022. "A standing-wave, phase-change thermoacoustic engine: Experiments and model projections," Energy, Elsevier, vol. 258(C).
    10. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    11. Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
    12. Bi, Tianjiao & Wu, Zhanghua & Chen, Wei & Zhang, Limin & Luo, Ercang & Zhang, Bin, 2022. "Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 239(PB).
    13. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
    15. Chen, Geng & Wang, Yufan & Tang, Lihua & Wang, Kai & Yu, Zhibin, 2020. "Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine," Applied Energy, Elsevier, vol. 276(C).
    16. Armando Di Meglio & Nicola Massarotti, 2022. "CFD Modeling of Thermoacoustic Energy Conversion: A Review," Energies, MDPI, vol. 15(10), pages 1-38, May.
    17. Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
    18. Cao, Yan & Mohammadian, Mehrnoush & Pirouzfar, Vahid & Su, Chia-Hung & Khan, Afrasyab, 2021. "Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations," Energy, Elsevier, vol. 237(C).
    19. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Zhang, Guolutiao & Wang, Ziyan & Wu, Weifeng & Wang, Shunsen & Zhao, Pan, 2023. "Modeling and thermodynamic analysis of a novel combined cooling and power system composed of alkali metal thermal electric converter and looped multistage thermoacoustically-driven refrigerator," Energy, Elsevier, vol. 263(PD).
    20. Xu, Jingyuan & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2017. "Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range," Applied Energy, Elsevier, vol. 185(P2), pages 2134-2141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:313:y:2022:i:c:s030626192200229x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.