IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023793.html
   My bibliography  Save this article

Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator

Author

Listed:
  • Bi, Tianjiao
  • Wu, Zhanghua
  • Chen, Wei
  • Zhang, Limin
  • Luo, Ercang
  • Zhang, Bin

Abstract

Looped travelling-wave thermoacoustic electric generator (LTTAEG) can transform thermal energy to electric power using thermoacoustic effect. Based on our previous effort on multi-stage LTTAEG with side-branched and dual-opposed linear alternators (LAs) as acoustic-to-electric transducers, for a higher output electric power and thermal-to-electric efficiency, a 4-stage LTTAEG is studied numerically and experimentally in this paper. In the simulation, the performance of 4-stage looped thermoacoustic heat engine is investigated based on linear thermoacoustic theory while the performance of dual-opposed LA is studied based on a novel network model. A new coupling algorithm between the 4-stage looped TAHE and dual-opposed LA is also proposed. In experiment, with 6 MPa pressurized helium as working gas, 650 °C and 25 °C heating and cooling temperatures. A highest electric power of 6.1 kW with thermal-to-electric efficiency of 15.86% and a highest thermal-to-electric efficiency of 19.64% with electric power of 4.37 kW is obtained when the electric capacitance connected to the LA is 17 μF and the electric resistance is 40 Ω and 75 Ω, respectively. Due to the high oscillating pressure in the system, some nonlinear phenomena have caused the simulation results deviated from the experimental results, especially in acoustic power and electric power, which should be investigated and considered in the future study.

Suggested Citation

  • Bi, Tianjiao & Wu, Zhanghua & Chen, Wei & Zhang, Limin & Luo, Ercang & Zhang, Bin, 2022. "Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023793
    DOI: 10.1016/j.energy.2021.122131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhibin & Jaworski, Artur J. & Backhaus, Scott, 2012. "Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy," Applied Energy, Elsevier, vol. 99(C), pages 135-145.
    2. Wu, Zhanghua & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2014. "Development of a 3kW double-acting thermoacoustic Stirling electric generator," Applied Energy, Elsevier, vol. 136(C), pages 866-872.
    3. Kang, Huifang & Cheng, Peng & Yu, Zhibin & Zheng, Hongfei, 2015. "A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators," Applied Energy, Elsevier, vol. 137(C), pages 9-17.
    4. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    5. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    6. Sun, D.M. & Wang, K. & Zhang, X.J. & Guo, Y.N. & Xu, Y. & Qiu, L.M., 2013. "A traveling-wave thermoacoustic electric generator with a variable electric R-C load," Applied Energy, Elsevier, vol. 106(C), pages 377-382.
    7. Hamood, Ahmed & Jaworski, Artur J. & Mao, Xiaoan & Simpson, Kevin, 2018. "Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator," Energy, Elsevier, vol. 144(C), pages 61-72.
    8. Abdoulla-Latiwish, Kalid O.A. & Mao, Xiaoan & Jaworski, Artur J., 2017. "Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities," Energy, Elsevier, vol. 134(C), pages 1107-1120.
    9. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
    10. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kaixin & Hu, Zhan-Chao, 2023. "Experimental investigation of a novel standing-wave thermoacoustic engine based on PCHE and supercritical CO2," Energy, Elsevier, vol. 282(C).
    2. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    3. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    4. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    2. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
    4. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
    5. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    6. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    7. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    8. Al-Kayiem, Ali & Yu, Zhibin, 2016. "Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe," Energy, Elsevier, vol. 112(C), pages 111-120.
    9. Hamood, Ahmed & Jaworski, Artur J. & Mao, Xiaoan & Simpson, Kevin, 2018. "Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator," Energy, Elsevier, vol. 144(C), pages 61-72.
    10. Wang, Kai & Sun, Daming & Zhang, Jie & Xu, Ya & Zou, Jiang & Wu, Ke & Qiu, Limin & Huang, Zhiyi, 2015. "Operating characteristics and performance improvements of a 500W traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 160(C), pages 853-862.
    11. Elhawary, M.A. & Ibrahim, Abdelmaged H. & Sabry, Ashraf S. & Abdel-Rahman, Ehab, 2020. "Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 414-426.
    12. Chen, Geng & Wang, Yufan & Tang, Lihua & Wang, Kai & Yu, Zhibin, 2020. "Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine," Applied Energy, Elsevier, vol. 276(C).
    13. Kang, Huifang & Cheng, Peng & Yu, Zhibin & Zheng, Hongfei, 2015. "A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators," Applied Energy, Elsevier, vol. 137(C), pages 9-17.
    14. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    15. Napolitano, Marialuisa & Romano, Rosario & Dragonetti, Raffaele, 2017. "Open-cell foams for thermoacoustic applications," Energy, Elsevier, vol. 138(C), pages 147-156.
    16. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Zhang, Guolutiao & Wang, Ziyan & Wu, Weifeng & Wang, Shunsen & Zhao, Pan, 2023. "Modeling and thermodynamic analysis of a novel combined cooling and power system composed of alkali metal thermal electric converter and looped multistage thermoacoustically-driven refrigerator," Energy, Elsevier, vol. 263(PD).
    17. Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
    18. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
    19. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
    20. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.