IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006577.html
   My bibliography  Save this article

Performance analysis of Carnot battery pumped thermal electricity storage aided with concentrated solar thermal input

Author

Listed:
  • Du, Mengqi
  • Yang, He
  • Du, Xiaoze
  • Wu, Hongwei

Abstract

The integration of pumped thermal electricity storage (PTES) with concentrated solar power (CSP) systems offers significant potential to enhance renewable energy consumption, optimize solar energy utilization, and elevate the overall efficiency and performance of PTES systems. Existing research on system integration primarily focuses on CSP plants utilizing molten salt for heat collection and PTES systems employing liquid-based heat storage. Limited studies have been conducted on integrating PTES systems incorporating solid packed beds with CSP plants utilizing alternative heat collection materials. For PTES systems featuring solid packed beds and CSP plants employing solid particle heat collection, this study proposes an innovative CSP-aided PTES system (CSP-PTES) that harnesses solar thermal input from a concentrated heliostat field. A thermodynamic model was developed, and mathematical models of system performance criteria were obtained. The effects of critical design and component parameters on system performance were investigated. Employing the Non-dominated Sorting Genetic Algorithm II (NSGA-II), optimization and the trade-off analysis of round-trip efficiency, energy density and power density were performed. The results demonstrate that there is a corresponding decrease in both energy density and power density with round-trip efficiency. The introduction of solar thermal greatly improves the output energy and power density of the system, with solar efficiency reaching up to 48 %, while the round trip efficiency of the system is slightly reduced due to solar efficiency. The variation in energy and power densities is much larger than the round-trip efficiency, resulting in the optimal points with high energy and power densities, and low round-trip efficiency when the LINMAP decision is applied. However, the round-trip efficiency still managed to be about 58 %.

Suggested Citation

  • Du, Mengqi & Yang, He & Du, Xiaoze & Wu, Hongwei, 2025. "Performance analysis of Carnot battery pumped thermal electricity storage aided with concentrated solar thermal input," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006577
    DOI: 10.1016/j.energy.2025.135015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2023. "Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle," Energy, Elsevier, vol. 263(PD).
    2. Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
    3. White, Alexander J., 2011. "Loss analysis of thermal reservoirs for electrical energy storage schemes," Applied Energy, Elsevier, vol. 88(11), pages 4150-4159.
    4. Khan, Muhammad Imran & Gutiérrez-Alvarez, R. & Asfand, Faisal & Bicer, Yusuf & Sgouridis, Sgouris & Al-Ghamdi, Sami G. & Jouhara, Hussam & Asif, M. & Kurniawan, Tonni Agustiono & Abid, Muhammad & Pesy, 2024. "The economics of concentrating solar power (CSP): Assessing cost competitiveness and deployment potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    5. Petrollese, Mario & Cascetta, Mario & Tola, Vittorio & Cocco, Daniele & Cau, Giorgio, 2022. "Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation," Energy, Elsevier, vol. 247(C).
    6. Maio, Marco & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio & Fontana, Nicola & Marini, Gustavo, 2024. "An innovative approach for optimal selection of pumped hydro energy storage systems to foster sustainable energy integration," Renewable Energy, Elsevier, vol. 227(C).
    7. McTigue, Joshua D. & White, Alexander J. & Markides, Christos N., 2015. "Parametric studies and optimisation of pumped thermal electricity storage," Applied Energy, Elsevier, vol. 137(C), pages 800-811.
    8. Wang, Liang & Lin, Xipeng & Chai, Lei & Peng, Long & Yu, Dong & Chen, Haisheng, 2019. "Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 523-534.
    9. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jiaxing & Zhao, Yao & Song, Jian & Wang, Kai & Zhu, Peiwang & Liu, Bingchi & Sun, Peifeng, 2025. "Thermodynamic investigation of a Joule-Brayton cycle Carnot battery multi-energy system integrated with external thermal (heat and cold) sources," Applied Energy, Elsevier, vol. 377(PC).
    2. Hu, Aowei & Wang, Liang & Lin, Xipeng & Ai, Wei & Bai, Yakai & Lin, Lin & Zhang, Chi & Qi, Zhicheng & Chen, Haisheng, 2025. "Performance analysis of recuperated Brayton pumped thermal electricity storage with staged compressors," Energy, Elsevier, vol. 316(C).
    3. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    4. Zhao, Yao & Huang, Jiaxing & Song, Jian & Ding, Yulong, 2024. "Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores," Energy, Elsevier, vol. 296(C).
    5. Xue, X.J. & Wang, H.N. & Wang, J.H. & Yang, B. & Yan, J. & Zhao, C.Y., 2024. "Experimental and numerical investigation on latent heat/cold stores for advanced pumped-thermal energy storage," Energy, Elsevier, vol. 300(C).
    6. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    7. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    8. Alberto Benato & Francesco De Vanna & Anna Stoppato, 2022. "Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System," Energies, MDPI, vol. 15(24), pages 1-21, December.
    9. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
    10. Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
    11. Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
    13. Ayah Marwan Rabi’ & Jovana Radulovic & James M. Buick, 2025. "Comparative Study of Different Gases for Packed-Bed Thermal Energy Storage Systems," Energies, MDPI, vol. 18(5), pages 1-19, March.
    14. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
    15. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Parametric optimisation and thermo-economic analysis of Joule–Brayton cycle-based pumped thermal electricity storage system under various charging–discharging periods," Energy, Elsevier, vol. 263(PE).
    16. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Ai, Wei & Wang, Liang & Lin, Xipeng & Bai, Yakai & Huang, Jingjian & Hu, Jiexiang & Chen, Haisheng, 2024. "Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization," Energy, Elsevier, vol. 313(C).
    18. Saghafifar, Mohammad & Schnellmann, Matthias A. & Scott, Stuart A., 2020. "Chemical looping electricity storage," Applied Energy, Elsevier, vol. 279(C).
    19. Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2023. "Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle," Energy, Elsevier, vol. 263(PD).
    20. Georgiou, Solomos & Shah, Nilay & Markides, Christos N., 2018. "A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems," Applied Energy, Elsevier, vol. 226(C), pages 1119-1133.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.