IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920310655.html
   My bibliography  Save this article

Chemical looping electricity storage

Author

Listed:
  • Saghafifar, Mohammad
  • Schnellmann, Matthias A.
  • Scott, Stuart A.

Abstract

Developing grid-scale energy storage technologies is the key element for broader deployment of renewable sources of energy. This paper examines a simple cycle which makes use of a thermo-chemical store, with a view to achieving high storage capacity by using the chemical looping concept. Results show that a Chemical Looping Electricity Storage (CLES) system can achieve a very high capacity, in the range of 250–350 kWh/m3, second only to hydrogen electricity storage systems. Its round-trip efficiency (40–55%) is potentially higher than that of the hydrogen electricity storage systems. By achieving a higher capacity than pumped thermal energy storage and higher round-trip efficiency than that of hydrogen systems, CLES has the potential to fill out the gap between these two grid-scale storage technologies. Thus, this system may play an important role in our future energy mix because, unlike hydrogen storage, it can achieve a high storage capacity without a huge penalty on its round-trip efficiency.

Suggested Citation

  • Saghafifar, Mohammad & Schnellmann, Matthias A. & Scott, Stuart A., 2020. "Chemical looping electricity storage," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920310655
    DOI: 10.1016/j.apenergy.2020.115553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
    2. Görke, R.H. & Hu, W. & Dunstan, M.T. & Dennis, J.S. & Scott, S.A., 2018. "Exploration of the material property space for chemical looping air separation applied to carbon capture and storage," Applied Energy, Elsevier, vol. 212(C), pages 478-488.
    3. White, A.J., 2009. "Thermodynamic analysis of the reverse Joule-Brayton cycle heat pump for domestic heating," Applied Energy, Elsevier, vol. 86(11), pages 2443-2450, November.
    4. White, Alexander & McTigue, Joshua & Markides, Christos, 2014. "Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage," Applied Energy, Elsevier, vol. 130(C), pages 648-657.
    5. White, Alexander J., 2011. "Loss analysis of thermal reservoirs for electrical energy storage schemes," Applied Energy, Elsevier, vol. 88(11), pages 4150-4159.
    6. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
    7. Steinmann, W.D., 2014. "The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage," Energy, Elsevier, vol. 69(C), pages 543-552.
    8. McTigue, Joshua D. & White, Alexander J. & Markides, Christos N., 2015. "Parametric studies and optimisation of pumped thermal electricity storage," Applied Energy, Elsevier, vol. 137(C), pages 800-811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vecchi, Andrea & Sciacovelli, Adriano, 2023. "Long-duration thermo-mechanical energy storage – Present and future techno-economic competitiveness," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    2. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    3. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
    4. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Georgiou, Solomos & Shah, Nilay & Markides, Christos N., 2018. "A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems," Applied Energy, Elsevier, vol. 226(C), pages 1119-1133.
    6. Alberto Benato & Francesco De Vanna & Anna Stoppato, 2022. "Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Guo, Juncheng & Cai, Ling & Chen, Jincan & Zhou, Yinghui, 2016. "Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system," Energy, Elsevier, vol. 113(C), pages 693-701.
    8. McTigue, J.D. & White, A.J., 2018. "A comparison of radial-flow and axial-flow packed beds for thermal energy storage," Applied Energy, Elsevier, vol. 227(C), pages 533-541.
    9. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Parametric optimisation and thermo-economic analysis of Joule–Brayton cycle-based pumped thermal electricity storage system under various charging–discharging periods," Energy, Elsevier, vol. 263(PE).
    10. Albert, Max & Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2022. "Operation and performance of Brayton Pumped Thermal Energy Storage with additional latent storage," Applied Energy, Elsevier, vol. 312(C).
    11. McTigue, Joshua D. & White, Alexander J. & Markides, Christos N., 2015. "Parametric studies and optimisation of pumped thermal electricity storage," Applied Energy, Elsevier, vol. 137(C), pages 800-811.
    12. Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
    13. Guo, Juncheng & Cai, Ling & Chen, Jincan & Zhou, Yinghui, 2016. "Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems," Energy, Elsevier, vol. 106(C), pages 260-269.
    14. Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    15. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
    16. Benato, Alberto & Stoppato, Anna, 2018. "Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system," Energy, Elsevier, vol. 147(C), pages 155-168.
    17. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    18. Wang, Liang & Lin, Xipeng & Chai, Lei & Peng, Long & Yu, Dong & Chen, Haisheng, 2019. "Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 523-534.
    19. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    20. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920310655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.