IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics036054422500533x.html
   My bibliography  Save this article

Valorization of waste biomass via an integrated gasification system for the co-production of dimethyl ether and urea

Author

Listed:
  • Buentello-Montoya, D.A.
  • Sepúlveda-Montufar, L.
  • Pulido-Moreno, D.O.

Abstract

Energy and chemicals such as urea have a large carbon footprint associated to greenhouse gas emissions and must be developed sustainably for the sake of society. This work presents the simulations of a system to produce Dimethyl Ether (DME) and urea from the air gasification of waste biomass coupled with carbon capture technology. The potential of different waste biomasses (avocado stone, palm tree husk and sugar cane bagasse) in the co-production of DME and urea was assessed in terms of reaction, product yields, energy and exergy efficiencies. The syngas with the largest H2/CO ratio (1.80) is produced from the gasification of avocado stone, while sugar cane bagasse results in the largest DME and urea reaction yields. In terms of energetic and exergetic analysis, it was found that most of the exergy losses occur during heat transfer with scrubbing liquids and wastewater (82 % of the losses in the waste streams), while the largest exergy destructions occur in the gasifier, methanol and ammonia synthesis units due to chemical reaction (more than 50 % of the destroyed exergy). Results indicate that in the case of Mexico, the studied biomasses can be used to synthesize DME and urea while satisfying the country's needs.

Suggested Citation

  • Buentello-Montoya, D.A. & Sepúlveda-Montufar, L. & Pulido-Moreno, D.O., 2025. "Valorization of waste biomass via an integrated gasification system for the co-production of dimethyl ether and urea," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s036054422500533x
    DOI: 10.1016/j.energy.2025.134891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500533X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Fang, Jing & Xiong, Chuhao & Feng, Mingqian & Wu, Ye & Liu, Dong, 2022. "Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation," Applied Energy, Elsevier, vol. 312(C).
    3. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    4. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    5. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    6. Dieterich, Vincent & Neumann, Katharina & Niederdränk, Anne & Spliethoff, Hartmut & Fendt, Sebastian, 2024. "Techno-economic assessment of renewable dimethyl ether production pathways from hydrogen and carbon dioxide in the context of power-to-X," Energy, Elsevier, vol. 301(C).
    7. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    8. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    9. Rosas-Mendoza, Erik Samuel & Alvarado-Vallejo, Andrea & Vallejo-Cantú, Norma Alejandra & Velasco-Santos, Carlos & Alvarado-Lassman, Alejandro, 2024. "Valorization of the complex organic waste in municipal solid wastes through the combination of hydrothermal carbonization and anaerobic digestion," Renewable Energy, Elsevier, vol. 231(C).
    10. Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
    11. Tsuboi, Yosuke & Ito, Shintaro & Takafuji, Makoto & Ohara, Hiroaki & Fujimori, Toshiro, 2017. "Development of a regenerative reformer for tar-free syngas production in a steam gasification process," Applied Energy, Elsevier, vol. 185(P2), pages 1217-1224.
    12. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    13. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandra Fontalvo-Morales & Segundo Rojas-Flores & Ángel Darío González-Delgado, 2025. "Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia," Sustainability, MDPI, vol. 17(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    3. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    4. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    5. Song, Yuhang & Tian, Ye & Zhou, Xiong & Liang, Shimang & Li, Xuanyu & Yang, Yu & Yuan, Liang, 2021. "Simulation of air-steam gasification of pine sawdust in an updraft gasification system for production of hydrogen-rich producer gas," Energy, Elsevier, vol. 226(C).
    6. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Flori, Giacomo & Frigo, Stefano & Barontini, Federica & Gabbrielli, Roberto & Sica, Pietro, 2024. "Experimental assessment of oxy-CO2 gasification strategy with woody biomass," Renewable Energy, Elsevier, vol. 228(C).
    8. Xiang, Xianan & Gong, Guangcai & Shi, Ying & Cai, Youchan & Wang, Chenhua, 2018. "Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2768-2778.
    9. Ku, Xiaoke & Wang, Jin & Jin, Hanhui & Lin, Jianzhong, 2019. "Effects of operating conditions and reactor structure on biomass entrained-flow gasification," Renewable Energy, Elsevier, vol. 139(C), pages 781-795.
    10. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    12. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Vera Marcantonio & Michael Müller & Enrico Bocci, 2021. "A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas," Energies, MDPI, vol. 14(20), pages 1-15, October.
    14. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    15. Tavares, Raquel & Monteiro, Eliseu & Tabet, Fouzi & Rouboa, Abel, 2020. "Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus," Renewable Energy, Elsevier, vol. 146(C), pages 1309-1314.
    16. Kaushal, Priyanka & Tyagi, Rakesh, 2017. "Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS," Renewable Energy, Elsevier, vol. 101(C), pages 629-636.
    17. Smith Lewin, Caroline & Fonseca de Aguiar Martins, Ana Rosa & Pradelle, Florian, 2020. "Modelling, simulation and optimization of a solid residues downdraft gasifier: Application to the co-gasification of municipal solid waste and sugarcane bagasse," Energy, Elsevier, vol. 210(C).
    18. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "The equivalence of stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    20. Yong Huang & Yiling Wan & Shasha Liu & Yimeng Zhang & Huanhuan Ma & Shu Zhang & Jianbin Zhou, 2019. "A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance," Energies, MDPI, vol. 12(15), pages 1-9, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s036054422500533x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.