IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp1014-1030.html
   My bibliography  Save this article

Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach

Author

Listed:
  • Yepes Maya, Diego Mauricio
  • Silva Lora, Electo Eduardo
  • Andrade, Rubenildo Vieira
  • Ratner, Albert
  • Martínez Angel, Juan Daniel

Abstract

This work proposes and employs a mixed-complexity modeling approach to creating a 3D computational fluid dynamics (CFD) model to predict the syngas production from Miscanthus briquettes in a two-stage downdraft gasifier operating with different gasification fluids. The study was performed at steady state regime in the Ansys Fluent environment considering the non-premixed combustion model. A probability density function is also included as a tool for the description of the chemical kinetics to predict the syngas composition following the main chemical reactions involved in the gasification process. The goal of this approach is to reduce the computational cost while still providing accurate predictions. In comparison to experimental gasification with air, the model correctly predicts the temperature profile inside the reactor, the composition of the syngas (CO, H2 and CH4), and therefore the lower heating value (LHV). For cases involving the use of saturated steam and oxygen as gasification fluids, the model predicted key species concentrations in the gasification zone and the reactor core and accurately described the significant increase in the LHV of the syngas. This approach opens the possibility of studying the gasification process in moving-bed reactors using different gasification fluids and feedstocks based on their elemental and proximate analysis.

Suggested Citation

  • Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1014-1030
    DOI: 10.1016/j.renene.2021.06.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tejasvi Sharma & Diego M. Yepes Maya & Francisco Regis M. Nascimento & Yunye Shi & Albert Ratner & Electo E. Silva Lora & Lourival Jorge Mendes Neto & Jose Carlos Escobar Palacios & Rubenildo Vieira A, 2018. "An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization," Energies, MDPI, vol. 11(11), pages 1-23, November.
    2. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    3. Shen, Ye & Li, Xian & Yao, Zhiyi & Cui, Xiaoqiang & Wang, Chi-Hwa, 2019. "CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier," Energy, Elsevier, vol. 170(C), pages 497-506.
    4. Chaurasia, Ashish, 2016. "Modeling, simulation and optimization of downdraft gasifier: Studies on chemical kinetics and operating conditions on the performance of the biomass gasification process," Energy, Elsevier, vol. 116(P1), pages 1065-1076.
    5. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    6. Plis, P. & Wilk, R.K., 2011. "Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier," Energy, Elsevier, vol. 36(6), pages 3838-3845.
    7. Gao, Xiaoyan & Xu, Fei & Bao, Fubing & Tu, Chengxu & Zhang, Yaning & Wang, Yingying & Yang, Yang & Li, Bingxi, 2019. "Simulation and optimization of rice husk gasification using intrinsic reaction rate based CFD model," Renewable Energy, Elsevier, vol. 139(C), pages 611-620.
    8. Jorge E. Preciado & John J. Ortiz-Martinez & Juan C. Gonzalez-Rivera & Rocio Sierra-Ramirez & Gerardo Gordillo, 2012. "Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus ®," Energies, MDPI, vol. 5(12), pages 1-17, November.
    9. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    10. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    11. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    12. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    13. Lv, Pengmei & Yuan, Zhenhong & Ma, Longlong & Wu, Chuangzhi & Chen, Yong & Zhu, Jingxu, 2007. "Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier," Renewable Energy, Elsevier, vol. 32(13), pages 2173-2185.
    14. Teixeira, Sandra & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2014. "Prospective application of municipal solid wastes for energy production in Portugal," Energy Policy, Elsevier, vol. 71(C), pages 159-168.
    15. Fernando, Niranjan & Narayana, Mahinsasa, 2016. "A comprehensive two dimensional Computational Fluid Dynamics model for an updraft biomass gasifier," Renewable Energy, Elsevier, vol. 99(C), pages 698-710.
    16. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghorbani, Saba & Atashkari, Kazem & Borji, Mehdi, 2022. "Three-stage model-based evaluation of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 734-745.
    2. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    2. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    3. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    4. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. ABM Abdul Malek & M Hasanuzzaman & Nasrudin A Rahim & Yusuf A Al–Turki, 2021. "Energy, economic, and environmental analysis of 10-MW biomass gasification based power generation in Malaysia," Energy & Environment, , vol. 32(2), pages 295-337, March.
    6. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    7. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    8. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    9. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    10. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    11. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    14. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    15. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    17. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    18. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    19. Rolandas Paulauskas & Kęstutis Zakarauskas & Nerijus Striūgas, 2021. "An Intensification of Biomass and Waste Char Gasification in a Gasifier," Energies, MDPI, vol. 14(7), pages 1-11, April.
    20. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1014-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.