IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5451-d1678235.html
   My bibliography  Save this article

Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia

Author

Listed:
  • Alejandra Fontalvo-Morales

    (Chemical Engineering Department, Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Universidad de Cartagena, Cartagena 130014, Colombia)

  • Segundo Rojas-Flores

    (Institutos y Centros de Investigación, Universidad Cesar Vallejo, Trujillo 13001, Peru)

  • Ángel Darío González-Delgado

    (Chemical Engineering Department, Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Universidad de Cartagena, Cartagena 130014, Colombia)

Abstract

Creole avocado is the second most widely produced and consumed variety of avocado globally. Due to its commercialization, limited studies have explored its potential for sustainable applications in biorefinery, particularly focusing on reusing the significant amount of waste generated during its consumption. This research evaluates thermodynamic energy losses of a Creole avocado extractive-based biorefinery, which are of critical importance during the fruit valorization process to determine the efficiency and possibilities of optimization, as well as sustainability impacts, through an exergy balance using computer-aided process engineering. The proposed method utilizes the whole fruit to produce three primary bioproducts, with a focus on implementation in the Montes de María region of Colombia. Following the extended mass and energy balance, an in-depth exergetic analysis was conducted, revealing that all process stages exhibited an exergetic efficiency exceeding 50%. The irreversibilities of the process were calculated as 7763.74 MJ/h, the total waste exergy was 2924.42 MJ/h, and the exergy from industrial waste amounted to 7800.42 MJ/h. These findings highlight the potential for optimizing the sustainability of avocado-based production systems through computer-aided analysis as an effective method. This approach accurately identifies exergy losses at each stage, providing precise numerical data and graphical representations. Additionally, it underscores not only the environmental benefits but also the contribution of these systems to enhancing energy efficiency in agro-industrial applications.

Suggested Citation

  • Alejandra Fontalvo-Morales & Segundo Rojas-Flores & Ángel Darío González-Delgado, 2025. "Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia," Sustainability, MDPI, vol. 17(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5451-:d:1678235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    2. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    3. Buentello-Montoya, D.A. & Sepúlveda-Montufar, L. & Pulido-Moreno, D.O., 2025. "Valorization of waste biomass via an integrated gasification system for the co-production of dimethyl ether and urea," Energy, Elsevier, vol. 319(C).
    4. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    2. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    3. Fumin Chi & Zhankun Tan & Qianwei Wang & Lin Yang & Xuedong Gu, 2024. "Tibetan Butter and Indian Ghee: A Review on Their Production and Adulteration," Agriculture, MDPI, vol. 14(9), pages 1-13, September.
    4. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    5. Gholami, Ali & Hajinezhad, Ahmad & Pourfayaz, Fathollah & Ahmadi, Mohammad Hossein, 2018. "The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: An exergy analysis approach," Energy, Elsevier, vol. 160(C), pages 478-489.
    6. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.
    7. Mollanoori, Mohammad & Dehghan, Ali Akbar, 2024. "Estimating the higher heating value and chemical exergy of solid, liquid, and natural gas fossil fuels," Energy, Elsevier, vol. 302(C).
    8. Gurjeet Singh & K. Chopra & V. V. Tyagi & A. K. Pandey & R. K. Sharma & Ahmet Sari, 2022. "Estimation of thermodynamic and enviroeconomic characteristics of khoa (milk food) production unit," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12542-12581, November.
    9. Khoobbakht, Golmohammad & Kheiralipour, Kamran & Rasouli, Hamed & Rafiee, Mojtaba & Hadipour, Mehrdad & Karimi, Mahmoud, 2020. "Experimental exergy analysis of transesterification in biodiesel production," Energy, Elsevier, vol. 196(C).
    10. Amelio, A. & Van de Voorde, T. & Creemers, C. & Degrève, J. & Darvishmanesh, S. & Luis, P. & Van der Bruggen, B., 2016. "Comparison between exergy and energy analysis for biodiesel production," Energy, Elsevier, vol. 98(C), pages 135-145.
    11. Miserocchi, Lorenzo & Franco, Alessandro & Testi, Daniele, 2024. "A novel approach to energy management in the dairy industry using performance indicators and load profiles: Application to a cheese dairy plant in Tuscany, Italy," Energy, Elsevier, vol. 310(C).
    12. Hu, Liangdong & Ma, Longlong & Hu, Guangzhi & Zhang, Wenjie & Liu, Ying & Xu, Rui & Ge, Wen & Chen, Yubao, 2022. "Utilization of illumination and thermal field in the preparation of jet–fuel components: The photothermic catalysis of Jatropha oil over the M/TiO2–HZSM–5," Energy, Elsevier, vol. 239(PC).
    13. Eric Masanet & Niko Heeren & Shigemi Kagawa & Jonathan Cullen & Reid Lifset & Richard Wood, 2021. "Material efficiency for climate change mitigation," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 254-259, April.
    14. Hasan Yildizhan & Cihan Yıldırım & Shiva Gorjian & Arman Ameen, 2023. "How May New Energy Investments Change the Sustainability of the Turkish Industrial Sector?," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    15. Li, Ximei & Gao, Jianmin & Chen, Bingyuan & You, Shi & Zheng, Yi & Du, Qian & Qin, Yukun, 2023. "Multi-objective optimization of district heating systems with turbine-driving fans and pumps considering economic, exergic, and environmental aspects," Energy, Elsevier, vol. 277(C).
    16. Paula M. Wenzel & Peter Radgen, 2023. "Extending effectiveness to efficiency: Comparing energy and environmental assessment methods for a wet cooling tower," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 693-706, June.
    17. Joda, Fatemeh & Ahmadi, Fatemeh, 2019. "Exergoeconomic analysis of conventional and using reactive distillation biodiesel production scenarios thermally integrated with a combined power plant," Renewable Energy, Elsevier, vol. 132(C), pages 898-910.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5451-:d:1678235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.