IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000088.html
   My bibliography  Save this article

A study on the effect of spark plug micro-hole hydrogen injection on the spray and combustion processes of a gasoline engine with intake port water injection

Author

Listed:
  • Zhuang, Yuan
  • Lin, Zhihong
  • Zhai, Rui
  • Huang, Yuhan
  • Nie, Binjian
  • Li, Yihan

Abstract

This study examined the impact of hydrogen direct injected through an aperture on edge of the spark plug (SHDI) on the spray and combustion processes of a gasoline engine operating with high water injection rates. The results demonstrated that SHDI effectively mitigated the negative effects of water injection, enhancing the combustion process. SHDI-generated jets significantly increased in-cylinder turbulence—by up to 40 m2/s2—and redirected large-scale vortex motion, enriching the fuel mixture around the spark plug. The equivalence ratio near the spark plug rose from 0.5 to 0.8, promoting the formation of a stable flame kernel up to 7° crank angle (CA) earlier, which accelerated overall combustion. Additionally, the heightened turbulence and increased in-cylinder temperatures induced by SHDI reduced water droplet size, promoting faster evaporation and minimizing the flame-extinguishing effects of residual water mist under high-load, high-water injection conditions. This also leaded to a more uniform air-fuel ratio distribution. Furthermore, hydrogen injection generates abundant H radicals, which enhance the formation of reactive species, accelerating low-temperature fuel decomposition and flame propagation. This counteracts the dilution effect of water injection, ensuring stable and efficient combustion even in challenging conditions. When the hydrogen injection ratio is 15 %, carbon emissions are reduced by 16 %.

Suggested Citation

  • Zhuang, Yuan & Lin, Zhihong & Zhai, Rui & Huang, Yuhan & Nie, Binjian & Li, Yihan, 2025. "A study on the effect of spark plug micro-hole hydrogen injection on the spray and combustion processes of a gasoline engine with intake port water injection," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000088
    DOI: 10.1016/j.energy.2025.134366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng, 2013. "Study of knock in a high compression ratio spark-ignition methanol engine by multi-dimensional simulation," Energy, Elsevier, vol. 50(C), pages 150-159.
    2. Liu, Zuowen & Zhang, Zhongjie & Rao, Shunlu & Zheng, Zhaolei, 2024. "Study of water injection on suppressing knock in a high compression ratio and supercharged hybrid gasoline engine," Energy, Elsevier, vol. 287(C).
    3. Ma, Haicheng & Lou, Gaoxiang & Fan, Tijun & Chan, Hing Kai & Chung, Sai Ho, 2021. "Conventional automotive supply chains under China's dual-credit policy: fuel economy, production and coordination," Energy Policy, Elsevier, vol. 151(C).
    4. Yu, Liukai & Zheng, Junjun & Ma, Gang & Jiao, Yangyang, 2023. "Analyzing the evolution trend of energy conservation and carbon reduction in transportation with promoting electrification in China," Energy, Elsevier, vol. 263(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhenfeng & Cui, Huasheng, 2022. "Numerical investigation on combustion processes of an aircraft piston engine fueled with aviation kerosene and gasoline," Energy, Elsevier, vol. 239(PD).
    2. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    3. Tiansheng Yang & Ken Peattie & Jean-Paul Skeete & Nicole Koenig-Lewis, 2024. "Navigating Transitions: How Electric Vehicle Sharing Is Shaping Sustainable Mobility in Chinese Cities," Sustainability, MDPI, vol. 16(19), pages 1-21, September.
    4. Xiaoyuan Feng & Yue Chen & Hongbo Li & Tian Ma & Yilong Ren, 2023. "Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    5. Feng Liu & Yingshuang Tan & Sudipto Sarkar & Xueqing Zhang & Xingjun Huang, 2023. "When to invest in electric vehicles under dual credit policy: A real options approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2186-2198, June.
    6. Rongjiang Cai & Tao Zhang & Xi Wang & Qiaoran Jia & Shufang Zhao & Nana Liu & Xiaoguang Wang, 2024. "Evolutionary Game and Simulation Analysis of New-Energy Vehicle Promotion in China Based on Reward and Punishment Mechanisms," Mathematics, MDPI, vol. 12(18), pages 1-24, September.
    7. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    8. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    9. Lai, Xin & Zhou, Long & Zhu, Zhiwei & Zheng, Yuejiu & Sun, Tao & Shen, Kai, 2023. "Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors," Energy, Elsevier, vol. 274(C).
    10. Zhijie Li & Changhui Zhai & Xiaoxiao Zeng & Kui Shi & Xinbo Wu & Tianwei Ma & Yunliang Qi, 2024. "Review of Pre-Ignition Research in Methanol Engines," Energies, MDPI, vol. 18(1), pages 1-27, December.
    11. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    12. Zou, Run & Li, Yuan & Liu, Jinxiang & Wang, Nana & Zeng, Qinghan & Li, Jiong, 2023. "Numerical study on the effects of spark strategies on knocking combustion in a downsized gasoline rotary engine," Energy, Elsevier, vol. 263(PD).
    13. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.
    14. Aqian Li & Zhaolei Zheng, 2020. "Effect of Spark Ignition Timing and Water Injection Temperature on the Knock Combustion of a GDI Engine," Energies, MDPI, vol. 13(18), pages 1-24, September.
    15. Gong, Changming & Liu, Fenghua & Sun, Jingzhen & Wang, Kang, 2016. "Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine," Energy, Elsevier, vol. 96(C), pages 166-175.
    16. Ma, Miaomiao & Meng, Weidong & Huang, Bo & Li, Yuyu, 2023. "The influence of dual credit policy on new energy vehicle technology innovation under demand forecast information asymmetry," Energy, Elsevier, vol. 271(C).
    17. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    18. Zhang, Bo & Ji, Changwei & Wang, Shuofeng & Liu, Xiaolong, 2014. "Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions," Energy, Elsevier, vol. 74(C), pages 829-835.
    19. Ma, Miaomiao & Meng, Weidong & Li, Yuyu & Huang, Bo, 2023. "Impact of dual credit policy on new energy vehicles technology innovation with information asymmetry," Applied Energy, Elsevier, vol. 332(C).
    20. Hsiao, Cody Yu-Ling & Yang, Rui & Zheng, Xin & Chiu, Yi-Bin, 2023. "Evaluations of policy contagion for new energy vehicle industry in China," Energy Policy, Elsevier, vol. 173(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.