IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223030967.html
   My bibliography  Save this article

Study of water injection on suppressing knock in a high compression ratio and supercharged hybrid gasoline engine

Author

Listed:
  • Liu, Zuowen
  • Zhang, Zhongjie
  • Rao, Shunlu
  • Zheng, Zhaolei

Abstract

This study investigated the effects of a direct water injection from both macroscopic characteristics and chemical kinetics aspects in high compression ratio engines, specifically regarding knocking concerns. On the one hand, −80 °CA is thought to be the ideal water injection timing (WIT) in terms of lowering mixture temperature, knock suppression, and water droplet dispersion. The mixture temperature is lowered to below 760 K by −80 °CA of WIT. When ignition timing (IT) is maintained at 2 oCA or −3 oCA, respectively, the water-fuel ratio (WFR) of 0.4 and 0.6 is the threshold for the impact of water droplet mass on combustion. The knock intensity decreases with increasing water-fuel ratio, and the pressure rise rate threshold of 0.6 bar/°CA is a knock-occurrence criterion. On the other hand, spontaneous combustion of end mixtures first occurs beneath the exhaust valve, transporting burned gases and raising temperatures. The IC4H7 concentration is higher in the mid-to-high temperature areas near the cylinder liner. Elevated concentrations of CH2O indicate high-temperature reactions, while increased levels of CH3 and HCO signify auto-ignition onset. Whether the IT is 2 oCA or −3 oCA, both IC4H7 concentration and OH concentration observe a declining trend with the increase of WFR.

Suggested Citation

  • Liu, Zuowen & Zhang, Zhongjie & Rao, Shunlu & Zheng, Zhaolei, 2024. "Study of water injection on suppressing knock in a high compression ratio and supercharged hybrid gasoline engine," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030967
    DOI: 10.1016/j.energy.2023.129702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.