IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10923-d904281.html
   My bibliography  Save this article

Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering

Author

Listed:
  • Hicham El Hadraoui

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Mourad Zegrari

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
    Ecole Nationale Supérieure des Arts et Métiers (ENSAM), Hassan II University of Casablanca, Casablanca 20000, Morocco)

  • Fatima-Ezzahra Hammouch

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Nasr Guennouni

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Oussama Laayati

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Ahmed Chebak

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

Abstract

Nowadays, electric vehicles attract significant attention because of the increasingly stringent exhaust emission policies all over the world. Moreover, with the fast expansion of the sustainable economy, the demand for electric vehicles is expanding. In the recent age, maintenance has seriously hampered the marketing and use of electric automobiles. As a result, the technique for maintaining electric vehicles is regarded as vital since it directly affects the security and availability for the end user and the passengers. Another key aspect of electric mobility is the integration of artificial intelligence in control, diagnostics, and prognostics. Meanwhile, a lot of research efforts are still devoted to developing and innovating electric traction systems, especially for diagnostic and prognostic purposes. Furthermore, topics covering important, current, and sustainability challenges should contain more than theoretical knowledge in high-quality education, particularly in engineering education. The purpose is to bridge the gap between the new technology and the learner’s circumstances through giving practical technical expertise and training in the sphere of overall engineering competences, to avoid non-standard, unskilled maintenance work. This article presents the first phase towards designing and developing a test bench of an electric vehicle’s powertrain used for research, learning and e-learning purposes, employing model-based systems engineering (MBSE) and systems modeling language (SysML) through the CESAM architecting and modeling framework. The aforementioned approach is used on our case study to build and present an operational viewpoint layout of the control, energy management, diagnostic, and prognostic test bench as part of the system’s initial phase of designing the system; the test bench layout proposed in this paper represents a flexible, low-cost, multidisciplinary downsized laboratory providing basic experiments related to e-mobility and covering numerous branches and study fields.

Suggested Citation

  • Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10923-:d:904281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    2. Oussama Laayati & Hicham El Hadraoui & Nasr Guennoui & Mostafa Bouzi & Ahmed Chebak, 2022. "Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes," Energies, MDPI, vol. 15(7), pages 1-31, April.
    3. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    4. Gemma Tejedor & Jordi Segalàs & Ángela Barrón & Mónica Fernández-Morilla & M. Teresa Fuertes & Jorge Ruiz-Morales & Ibón Gutiérrez & Esther García-González & Pilar Aramburuzabala & Àngels Hernández, 2019. "Didactic Strategies to Promote Competencies in Sustainability," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    5. Du, Jiuyu & Li, Feiqiang & Li, Jianqiu & Wu, Xiaogang & Song, Ziyou & Zou, Yunfei & Ouyang, Minggao, 2019. "Evaluating the technological evolution of battery electric buses: China as a case," Energy, Elsevier, vol. 176(C), pages 309-319.
    6. Azad M. Madni & Michael Sievers, 2018. "Model‐based systems engineering: Motivation, current status, and research opportunities," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 172-190, May.
    7. Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
    8. Zou, Yuan & Wei, Shouyang & Sun, Fengchun & Hu, Xiaosong & Shiao, Yaojung, 2016. "Large-scale deployment of electric taxis in Beijing: A real-world analysis," Energy, Elsevier, vol. 100(C), pages 25-39.
    9. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    2. Oussama Laayati & Hicham El Hadraoui & Adila El Magharaoui & Nabil El-Bazi & Mostafa Bouzi & Ahmed Chebak & Josep M. Guerrero, 2022. "An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
    3. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    4. Sauer, Ildo L. & Escobar, Javier F. & da Silva, Mauro F.P. & Meza, Carlos G. & Centurion, Carlos & Goldemberg, José, 2015. "Bolivia and Paraguay: A beacon for sustainable electric mobility?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 910-925.
    5. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal scheduling for electric bus fleets based on dynamic programming approach by considering battery capacity fade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    7. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    8. Cecilia Smaniotto & Claudio Battistella & Laura Brunelli & Edoardo Ruscio & Antonella Agodi & Francesco Auxilia & Valentina Baccolini & Umberto Gelatti & Anna Odone & Rosa Prato & Stefano Tardivo & Gi, 2020. "Sustainable Development Goals and 2030 Agenda: Awareness, Knowledge and Attitudes in Nine Italian Universities, 2019," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    9. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    10. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    11. Feiyu Hou & Fei Yao & Zheng Li, 2022. "A Torque-Compensated Fault-Tolerant Control Method for Electric Vehicle Traction Motor with Short-Circuit Fault," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    12. Fermín Sánchez-Carracedo & Jordi Segalas & Gorka Bueno & Pere Busquets & Joan Climent & Victor G. Galofré & Boris Lazzarini & David Lopez & Carme Martín & Rafael Miñano & Estíbaliz Sáez de Cámara & Bá, 2021. "Tools for Embedding and Assessing Sustainable Development Goals in Engineering Education," Sustainability, MDPI, vol. 13(21), pages 1-30, November.
    13. Thorne, Rebecca Jayne & Hovi, Inger Beate & Figenbaum, Erik & Pinchasik, Daniel Ruben & Amundsen, Astrid Helene & Hagman, Rolf, 2021. "Facilitating adoption of electric buses through policy: Learnings from a trial in Norway," Energy Policy, Elsevier, vol. 155(C).
    14. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    15. Werner Riess & Monika Martin & Christoph Mischo & Hans-Georg Kotthoff & Eva-Maria Waltner, 2022. "How Can Education for Sustainable Development (ESD) Be Effectively Implemented in Teaching and Learning? An Analysis of Educational Science Recommendations of Methods and Procedures to Promote ESD Goa," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    16. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    17. Kifah Imara & Fahriye Altinay, 2021. "Integrating Education for Sustainable Development Competencies in Teacher Education," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    18. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    19. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    20. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10923-:d:904281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.