IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032870.html
   My bibliography  Save this article

Integrating domain knowledge into transformer for short-term wind power forecasting

Author

Listed:
  • Cheng, Junhao
  • Luo, Xing
  • Jin, Zhi

Abstract

Wind energy is an environmentally friendly source of energy and serves as an efficient supplement to conventional energy resources. Accurate wind power forecasting is crucial for effective decision-making in the daily operation of wind power plants. However, due to the heavy dependence on weather conditions, the variability and uncertainty associated with weather pose significant challenges to wind power forecasting. In this study, we propose a domain-knowledge integrated Transformer (DKFormer) model for short-term wind power forecasting. The proposed model integrates domain knowledge of wind power generation through three portable modules that play essential roles in data pre-processing, model training, and forecasting stages respectively. Additionally, by constructing boundary constraints that simultaneously utilize the data of both measured wind power and numerical weather prediction (NWP), the DKFormer model further reduces errors in multi-step wind power forecasting and improves overall forecast performance, particularly when input wind speed data exhibits dramatic variations. Furthermore, transfer learning techniques are employed to enhance the forecast capability of the DKFormer model using limited training data. Real-life datasets are used to evaluate the performance of the proposed DKFormer, demonstrating its superiority over conventional statistical models and DL models in short-term wind forecasting. Specifically, in day-ahead wind power forecasting experiments, our proposed DKFormer model achieves a 22.0% reduction in mean absolute error (MAE) while also exhibiting improved forecast stability compared to the conventional Transformer model.

Suggested Citation

  • Cheng, Junhao & Luo, Xing & Jin, Zhi, 2024. "Integrating domain knowledge into transformer for short-term wind power forecasting," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032870
    DOI: 10.1016/j.energy.2024.133511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    2. Song, Zhe & Jiang, Yu & Zhang, Zijun, 2014. "Short-term wind speed forecasting with Markov-switching model," Applied Energy, Elsevier, vol. 130(C), pages 103-112.
    3. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    4. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    5. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    6. Hu, Jianming & Wang, Jianzhou & Ma, Kailiang, 2015. "A hybrid technique for short-term wind speed prediction," Energy, Elsevier, vol. 81(C), pages 563-574.
    7. Qian, Yaoru & Wang, Tongguang & Yuan, Yiping & Zhang, Yuquan, 2020. "Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation," Energy, Elsevier, vol. 206(C).
    8. Wu, Huijuan & Meng, Keqilao & Fan, Daoerji & Zhang, Zhanqiang & Liu, Qing, 2022. "Multistep short-term wind speed forecasting using transformer," Energy, Elsevier, vol. 261(PA).
    9. Luo, Xing & Zhang, Dongxiao, 2023. "A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs," Energy, Elsevier, vol. 268(C).
    10. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    11. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    12. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    13. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
    14. Zhou, Huanyu & Qiu, Yingning & Feng, Yanhui & Liu, Jing, 2022. "Power prediction of wind turbine in the wake using hybrid physical process and machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 568-586.
    15. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    16. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    2. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    3. Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
    4. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    5. Wang, Huaqing & Tan, Zhongfu & Liang, Yan & Li, Fanqi & Zhang, Zheyu & Ju, Liwei, 2024. "A novel multi-layer stacking ensemble wind power prediction model under Tensorflow deep learning framework considering feature enhancement and data hierarchy processing," Energy, Elsevier, vol. 286(C).
    6. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    7. Jin, Huaiping & Zhang, Kehao & Fan, Shouyuan & Jin, Huaikang & Wang, Bin, 2024. "Wind power forecasting based on ensemble deep learning with surrogate-assisted evolutionary neural architecture search and many-objective federated learning," Energy, Elsevier, vol. 308(C).
    8. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    9. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    10. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    11. Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
    12. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    13. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    14. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    15. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    16. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
    17. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    18. Wu, Qiang & Zheng, Hongling & Guo, Xiaozhu & Liu, Guangqiang, 2022. "Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks," Renewable Energy, Elsevier, vol. 199(C), pages 977-992.
    19. Zhao, Beizhen & He, Xin & Ran, Shaolin & Zhang, Yong & Cheng, Cheng, 2024. "Spatial correlation learning based on graph neural network for medium-term wind power forecasting," Energy, Elsevier, vol. 296(C).
    20. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Economic performance indicators of wind energy based on wind speed stochastic modeling," Applied Energy, Elsevier, vol. 154(C), pages 290-297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.