IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics036054422400639x.html
   My bibliography  Save this article

Integrated operation and efficiency analysis of CaCO3/CaO in a fixed-bed reactor for thermochemical energy storage

Author

Listed:
  • Tian, X.K.
  • Guo, S.J.
  • Jiang, L.
  • Lin, S.C.
  • Yan, J.
  • Zhao, C.Y.

Abstract

Calcium-based thermochemical energy storage (TCES) has attracted much attention in solar energy utilization and storage. However, the investigations of the CaCO3/CaO system are incomplete and poorly integrated at the reactor scale. In this work, a fixed-bed reactor for calcium looping (CaL) is used to conduct the integrated operation of energy storage and release. The decomposition conversion of CaCO3 in N2 at 850 °C for 8 h is 63.8% and the carbonation conversion of the corresponding decomposition product is 67.2% in CO2 at 750 °C for 4 h. The lower reactor filling increases overall thermal energy storage efficiency but decreases released energy. Furthermore, a simulation model is built to study the key operation parameters that greatly affect reactor performances. According to the orthonormal design, the high calcination temperature and porosity of 0.6–0.7 are key factors to improve both high thermal energy storage efficiency and released energy. The carbonation temperature and thermal conductivity are less important factors than decomposition temperature and porosity, which can be adjusted flexibly to meet the needs of heat utilization and cost reduction. This work provides valuable guidance for optimizing reactor operation and modifying materials to achieve high overall efficiency and released energy in fixed-bed reactors.

Suggested Citation

  • Tian, X.K. & Guo, S.J. & Jiang, L. & Lin, S.C. & Yan, J. & Zhao, C.Y., 2024. "Integrated operation and efficiency analysis of CaCO3/CaO in a fixed-bed reactor for thermochemical energy storage," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400639x
    DOI: 10.1016/j.energy.2024.130867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400639X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400639x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.