IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300556.html
   My bibliography  Save this article

Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage

Author

Listed:
  • Peng, Xinyue
  • Yao, Min
  • Root, Thatcher W.
  • Maravelias, Christos T.

Abstract

Concentrating solar power (CSP) integrated with thermochemical energy storage (TCES) has the potential to deliver cost-effective and dispatchable renewable power. In this work, a system-level analysis of CSP with fixed-bed reactors for TCES is provided. First, we simulate fixed-bed reactors at various operating conditions and build effective surrogate models. Second, we develop an optimization model for the design and operation of CSP plants under seasonal solar variability. Using the proposed model, we compare the performance of three types (redox, hydroxide, and carbonate) of solid-gas TCES systems. Results show that, with careful design, TCES can potentially improve the plant performance over two-tank molten salt storage. Finally, the impacts of key process parameters and reaction properties are analyzed to provide guidance for future TCES development.

Suggested Citation

  • Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300556
    DOI: 10.1016/j.apenergy.2020.114543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deutsch, Markus & Müller, Danny & Aumeyr, Christian & Jordan, Christian & Gierl-Mayer, Christian & Weinberger, Peter & Winter, Franz & Werner, Andreas, 2016. "Systematic search algorithm for potential thermochemical energy storage systems," Applied Energy, Elsevier, vol. 183(C), pages 113-120.
    2. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    3. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
    4. Bayon, Alicia & Bader, Roman & Jafarian, Mehdi & Fedunik-Hofman, Larissa & Sun, Yanping & Hinkley, Jim & Miller, Sarah & Lipiński, Wojciech, 2018. "Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications," Energy, Elsevier, vol. 149(C), pages 473-484.
    5. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    6. Tescari, S. & Singh, A. & Agrafiotis, C. & de Oliveira, L. & Breuer, S. & Schlögl-Knothe, B. & Roeb, M. & Sattler, C., 2017. "Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant," Applied Energy, Elsevier, vol. 189(C), pages 66-75.
    7. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    8. Schmidt, Matthias & Gutierrez, Andrea & Linder, Marc, 2017. "Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor," Applied Energy, Elsevier, vol. 188(C), pages 672-681.
    9. Risthaus, Kai & Bürger, Inga & Linder, Marc & Schmidt, Matthias, 2020. "Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments," Applied Energy, Elsevier, vol. 261(C).
    10. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    11. André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
    12. Binotti, Marco & Astolfi, Marco & Campanari, Stefano & Manzolini, Giampaolo & Silva, Paolo, 2017. "Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants," Applied Energy, Elsevier, vol. 204(C), pages 1007-1017.
    13. Pardo, P. & Deydier, A. & Anxionnaz-Minvielle, Z. & Rougé, S. & Cabassud, M. & Cognet, P., 2014. "A review on high temperature thermochemical heat energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 591-610.
    14. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    15. Ranjha, Qasim & Oztekin, Alparslan, 2017. "Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage," Renewable Energy, Elsevier, vol. 111(C), pages 825-835.
    16. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    2. Hui Yang & Chengcheng Wang & Lige Tong & Shaowu Yin & Li Wang & Yulong Ding, 2023. "Salt Hydrate Adsorption Material-Based Thermochemical Energy Storage for Space Heating Application: A Review," Energies, MDPI, vol. 16(6), pages 1-54, March.
    3. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    4. Selvan Bellan & Tatsuya Kodama & Nobuyuki Gokon & Koji Matsubara, 2022. "A review on high‐temperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
    2. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    3. Carro, A. & Chacartegui, R. & Ortiz, C. & Becerra, J.A., 2022. "Analysis of a thermochemical energy storage system based on the reversible Ca(OH)2/CaO reaction," Energy, Elsevier, vol. 261(PA).
    4. Wang, Mengyi & Chen, Li & Zhou, Yuhao & Tao, Wen-Quan, 2022. "Numerical simulation of the calcium hydroxide/calcium oxide system dehydration reaction in a shell-tube reactor," Applied Energy, Elsevier, vol. 312(C).
    5. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    7. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    8. Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    10. Seon Tae Kim & Haruka Miura & Hiroki Takasu & Yukitaka Kato & Alexandr Shkatulov & Yuri Aristov, 2019. "Adapting the MgO-CO 2 Working Pair for Thermochemical Energy Storage by Doping with Salts: Effect of the (LiK)NO 3 Content," Energies, MDPI, vol. 12(12), pages 1-13, June.
    11. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
    12. Guillermo Martinez Castilla & Diana Carolina Guío-Pérez & Stavros Papadokonstantakis & David Pallarès & Filip Johnsson, 2021. "Techno-Economic Assessment of Calcium Looping for Thermochemical Energy Storage with CO 2 Capture," Energies, MDPI, vol. 14(11), pages 1-17, May.
    13. Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
    14. Risthaus, Kai & Bürger, Inga & Linder, Marc & Schmidt, Matthias, 2020. "Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments," Applied Energy, Elsevier, vol. 261(C).
    15. Wang, Mengyi & Chen, Li & He, Pu & Tao, Wen-Quan, 2019. "Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors," Energy, Elsevier, vol. 181(C), pages 417-428.
    16. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    17. Sánchez Jiménez, Pedro E. & Perejón, Antonio & Benítez Guerrero, Mónica & Valverde, José M. & Ortiz, Carlos & Pérez Maqueda, Luis A., 2019. "High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 235(C), pages 543-552.
    18. Han, Xiangyu & Wang, Liang & Ling, Haoshu & Ge, Zhiwei & Lin, Xipeng & Dai, Xingjian & Chen, Haisheng, 2022. "Critical review of thermochemical energy storage systems based on cobalt, manganese, and copper oxides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    20. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.