IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001069.html
   My bibliography  Save this article

Multi-objective optimization of a novel combined cooling, heating and power solar thermal energy storage system: A comprehensive analysis of energy, exergy, exergoeconomic, and exergoenvironmental performance

Author

Listed:
  • Shan, Chuanyun
  • Wang, Jiangfeng
  • Cao, Yi
  • Li, Hang

Abstract

Efficient utilization of the renewable energy to meet the demands for cooling, heating, and power is an effective pathway for achieving carbon neutrality. In this paper, a novel combined cooling, heating, and power solar thermal energy storage system is proposed, consisting of a supercritical CO2 cycle coupled with a Rankine-lithium bromide absorption cycle. System performance is evaluated from the perspectives of energy, exergy, exergoeconomic, and exergoenvironmental (4E) analysis. A multi-objective optimization method based on the multidimensional scaling dimensionality reduction algorithm for 4E analysis is introduced. The 4E analysis indicate the pressure ratio (PR) has the most significant impacts on system performance, with exergy efficiency reaching 55.30 % and thermal efficiency attaining 25.65 % as PR increases. Enhancing performance of the condenser and the evaporator is the optimal method for further improving system exergy efficiency. The solar power tower and heliostat field constitute the largest component cost portion, comprising 78.45 %. Meanwhile, the miniaturization and lightweight design of components are primary strategies for optimizing system environmental performance. Multi-objective optimization results show that, compared with single-objective optimized operating conditions, sacrificing a small portion of thermodynamic and exergy performance can reduce the unit cost of system product by 4.753 % and the unit environmental impact by 3.342 %.

Suggested Citation

  • Shan, Chuanyun & Wang, Jiangfeng & Cao, Yi & Li, Hang, 2025. "Multi-objective optimization of a novel combined cooling, heating and power solar thermal energy storage system: A comprehensive analysis of energy, exergy, exergoeconomic, and exergoenvironmental per," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001069
    DOI: 10.1016/j.energy.2025.134464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
    2. Li, Meng-Jie & Li, Ming-Jia & Jiang, Rui & Du, Shen & Li, Xiao-Yue, 2024. "Study on the dynamic characteristics of a concentrated solar power plant with the supercritical CO2 Brayton cycle coupled with different thermal energy storage methods," Energy, Elsevier, vol. 288(C).
    3. Xinchang ‘Cathy’ Li & Lei Zhao & Yue Qin & Keith Oleson & Yiwen Zhang, 2024. "Elevated urban energy risks due to climate-driven biophysical feedbacks," Nature Climate Change, Nature, vol. 14(10), pages 1056-1063, October.
    4. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    5. Le Roux, Diane & Olivès, Régis & Neveu, Pierre, 2024. "Multi-objective optimisation of a thermocline thermal energy storage integrated in a concentrated solar power plant," Energy, Elsevier, vol. 300(C).
    6. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2024. "Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field," Energy, Elsevier, vol. 301(C).
    7. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    8. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    9. Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
    10. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    11. Cavalcanti, Eduardo José Cidade, 2017. "Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 507-519.
    12. Zhang, Chaobo & Sun, Jie & Qiao, Yang & Wei, Jinjia, 2024. "Design, off-design and operation study of concentrating solar power system with calcium-looping thermochemical energy storage and photovoltaic-driven compressed CO2 energy storage," Energy, Elsevier, vol. 312(C).
    13. Shan, Chuanyun & Li, Hang & Cao, Yi & Jia, Wanying & Li, Yuduo & Zhao, Pan & Wang, Jiangfeng, 2024. "Multi-objective optimization and off-design performance analysis on the ammonia-water cooling-power/heating-power integrated system," Energy, Elsevier, vol. 310(C).
    14. Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
    15. Philipp C. Verpoort & Lukas Gast & Anke Hofmann & Falko Ueckerdt, 2024. "Impact of global heterogeneity of renewable energy supply on heavy industrial production and green value chains," Nature Energy, Nature, vol. 9(4), pages 491-503, April.
    16. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    17. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).
    18. Wang, Ding & Sun, Lei & Xie, Yonghui, 2023. "Performance evaluation of CO2 pressurization and storage system combined with S–CO2 power generation process and absorption refrigeration cycle," Energy, Elsevier, vol. 273(C).
    19. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yupeng & Xuan, Yimin & Teng, Liang & Liu, Jingrui & Wang, Busheng, 2024. "A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants," Energy, Elsevier, vol. 288(C).
    2. Khademi, Mohammad Mahyar & Kasaeian, Alibakhsh, 2025. "Hydrogen production using solar heliostat fields: A review," Energy, Elsevier, vol. 314(C).
    3. Ortiz, C. & García-Luna, S. & Carro, A. & Carvajal, E. & Chacartegui, R., 2024. "Techno-economic analysis of a modular thermochemical battery for electricity storage based on calcium-looping," Applied Energy, Elsevier, vol. 367(C).
    4. Yang, Shanju & Zhang, Yao & Gao, Zening & Liu, Zhan, 2024. "Isobaric compressed air energy storage system: Water compensating cycle or CO2 compensating cycle?," Energy, Elsevier, vol. 312(C).
    5. Rong, Fanhua & Yu, Zeting & Zhang, Kaifan & Sun, Jingyi & Wang, Daohan, 2024. "Performance evaluation and multi-objective optimization of hydrogen-based integrated energy systems driven by renewable energy sources," Energy, Elsevier, vol. 313(C).
    6. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    7. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    8. Cheng, Kun & Wang, Jinshuai & Shao, Yunlin & Fu, Lianyan & Wu, Zhengxiang & Zhang, Yuxin & Yang, Jiahao & Wu, Kaiyao & Zhang, Yang & Chen, Weidong & Huang, Xin & Ma, Chuan & Ran, Jingyu, 2024. "Techno-economic assessment and multi-objective optimization of a hybrid methanol-reforming proton exchange membrane fuel cell system with cascading energy utilization," Energy, Elsevier, vol. 313(C).
    9. Liu, Zhongyan & Guan, Hongwei & Jin, Xu & Su, Wei & Shao, Jiawei & Fan, Jing & Zhang, Hao & Li, Heng & Sun, Dahan, 2024. "Thermodynamic and economic analysis of a trans-critical CO2 energy storage system integrated with ORC and solar energy," Energy, Elsevier, vol. 313(C).
    10. Zhou, Xiao & Abed, Azher M. & Abdullaev, Sherzod & Lei, Guoliang & He, Li & Li, Xuetao & Elmasry, Yasser & Mahariq, Ibrahim, 2024. "Data-driven study/optimization of a solar power and cooling generation system in a transient operation mode and proposing a novel multi-turbine modification concept to reduce the sun's intermittent ef," Energy, Elsevier, vol. 309(C).
    11. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    12. Xiao Ma & Yongchun Yang & Huazhang Zhu, 2025. "Spatiotemporal Characteristics and Influencing Factors of Renewable Energy Production Development in Ningxia Hui Autonomous Region, China (2014–2021)," Land, MDPI, vol. 14(4), pages 1-26, April.
    13. Fan, Xiaoyu & Xu, Hao & Li, Yihong & Li, Junxian & Wang, Zhikang & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration," Applied Energy, Elsevier, vol. 371(C).
    14. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    15. Chen, Yang & Wu, Ye & Liu, Xing & Ma, Jiliang & Liu, Daoyin & Chen, Xiaoping & Liu, Dong, 2024. "Energy, exergy and economic (3E) analysis of a novel integration process based on coal-fired power plant with CO2 capture & storage, CO2 refrigeration, and waste heat recovery," Energy, Elsevier, vol. 299(C).
    16. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    17. Bassam, Ameen M. & Elminshawy, Nabil A.S. & Oterkus, Erkan & Amin, Islam, 2024. "Hybrid compressed air energy storage system and control strategy for a partially floating photovoltaic plant," Energy, Elsevier, vol. 313(C).
    18. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    19. Saghafifar, Mohammad & Schnellmann, Matthias A. & Scott, Stuart A., 2020. "Chemical looping electricity storage," Applied Energy, Elsevier, vol. 279(C).
    20. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.