A comparative techno-economic assessment between solar-based hydrogen production by methane pyrolysis and water electrolysis methods
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.122504
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
- Patlolla, Shashank Reddy & Katsu, Kyle & Sharafian, Amir & Wei, Kevin & Herrera, Omar E. & Mérida, Walter, 2023. "A review of methane pyrolysis technologies for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2024. "Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field," Energy, Elsevier, vol. 301(C).
- Li, Xin & Kong, Weiqiang & Wang, Zhifeng & Chang, Chun & Bai, Fengwu, 2010. "Thermal model and thermodynamic performance of molten salt cavity receiver," Renewable Energy, Elsevier, vol. 35(5), pages 981-988.
- Mu, Ruiqi & Liu, Ming & Zhang, Peiye & Yan, Junjie, 2023. "System design and thermo-economic analysis of a new coal power generation system based on supercritical water gasification with full CO2 capture," Energy, Elsevier, vol. 285(C).
- Msheik, Malek & Rodat, Sylvain & Abanades, Stéphane, 2022. "Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors," Energy, Elsevier, vol. 260(C).
- Houssainy, Sammy & Janbozorgi, Mohammad & Ip, Peggy & Kavehpour, Pirouz, 2018. "Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system," Renewable Energy, Elsevier, vol. 115(C), pages 1043-1054.
- Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
- Koumi Ngoh, Simon & Njomo, Donatien, 2012. "An overview of hydrogen gas production from solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6782-6792.
- M, Aravindan & V, Madhan Kumar & Hariharan, V.S. & Narahari, Tharun & P, Arun Kumar & K, Madhesh & G, Praveen Kumar & Prabakaran, Rajendran, 2023. "Fuelling the future: A review of non-renewable hydrogen production and storage techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Roy, Dibyendu & Samanta, Samiran, 2024. "A solar-assisted power-to-hydrogen system based on proton-conducting solid oxide electrolyzer cells," Renewable Energy, Elsevier, vol. 220(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Enaloui, Reza & Sharifi, Shakiba & Faridpak, Behdad & Hammad, Ahmed & Al-Hussein, Mohamed & Musilek, Petr, 2025. "Techno-economic assessment of a solar-powered green hydrogen storage concept based on reversible solid oxide cells for residential micro-grid: A case study in Calgary," Energy, Elsevier, vol. 319(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2024. "Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field," Energy, Elsevier, vol. 301(C).
- Gunarayu, Mathesh Rao & Abdul Patah, Muhamad Fazly & Ashri Wan Daud, Wan Mohd, 2025. "Advancements in methane pyrolysis: A comprehensive review of parameters and molten catalysts in bubble column reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
- Enaloui, Reza & Sharifi, Shakiba & Faridpak, Behdad & Hammad, Ahmed & Al-Hussein, Mohamed & Musilek, Petr, 2025. "Techno-economic assessment of a solar-powered green hydrogen storage concept based on reversible solid oxide cells for residential micro-grid: A case study in Calgary," Energy, Elsevier, vol. 319(C).
- Bassam, Ameen M. & Elminshawy, Nabil A.S. & Oterkus, Erkan & Amin, Islam, 2024. "Hybrid compressed air energy storage system and control strategy for a partially floating photovoltaic plant," Energy, Elsevier, vol. 313(C).
- Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
- Yang, Shanju & Zhang, Yao & Gao, Zening & Liu, Zhan, 2024. "Isobaric compressed air energy storage system: Water compensating cycle or CO2 compensating cycle?," Energy, Elsevier, vol. 312(C).
- Rong, Fanhua & Yu, Zeting & Zhang, Kaifan & Sun, Jingyi & Wang, Daohan, 2024. "Performance evaluation and multi-objective optimization of hydrogen-based integrated energy systems driven by renewable energy sources," Energy, Elsevier, vol. 313(C).
- Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
- Yu, Qiang & Fu, Peng & Yang, Yihui & Qiao, Jiafei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and parametric study of molten salt receiver of concentrating solar power tower plant," Energy, Elsevier, vol. 200(C).
- Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
- Khademi, Mohammad Mahyar & Kasaeian, Alibakhsh, 2025. "Hydrogen production using solar heliostat fields: A review," Energy, Elsevier, vol. 314(C).
- Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
- Ma, Ning & Zhao, Pan & Liu, Aijie & Xu, Wenpan & Wang, Jiangfeng, 2024. "Off-design behavior investigation of hydrogen blending-fueled compressed air energy storage system," Energy, Elsevier, vol. 306(C).
- Shan, Chuanyun & Wang, Jiangfeng & Cao, Yi & Li, Hang, 2025. "Multi-objective optimization of a novel combined cooling, heating and power solar thermal energy storage system: A comprehensive analysis of energy, exergy, exergoeconomic, and exergoenvironmental per," Energy, Elsevier, vol. 316(C).
- Cheng, Kun & Wang, Jinshuai & Shao, Yunlin & Fu, Lianyan & Wu, Zhengxiang & Zhang, Yuxin & Yang, Jiahao & Wu, Kaiyao & Zhang, Yang & Chen, Weidong & Huang, Xin & Ma, Chuan & Ran, Jingyu, 2024. "Techno-economic assessment and multi-objective optimization of a hybrid methanol-reforming proton exchange membrane fuel cell system with cascading energy utilization," Energy, Elsevier, vol. 313(C).
- Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
- Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
- Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
- Zhou, Xiao & Abed, Azher M. & Abdullaev, Sherzod & Lei, Guoliang & He, Li & Li, Xuetao & Elmasry, Yasser & Mahariq, Ibrahim, 2024. "Data-driven study/optimization of a solar power and cooling generation system in a transient operation mode and proposing a novel multi-turbine modification concept to reduce the sun's intermittent ef," Energy, Elsevier, vol. 309(C).
More about this item
Keywords
Methane pyrolysis; Solid oxide electrolysis; Heliostat solar; Technoeconomic analysis; Clean hydrogen production;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125001661. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.