IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp629-643.html
   My bibliography  Save this article

Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants

Author

Listed:
  • Wang, Qiliang
  • Pei, Gang
  • Yang, Hongxing

Abstract

Solar-to-thermal conversion efficiency of the parabolic trough collector significantly degrades at high operating temperatures, which exerts seriously negative effects on the development of parabolic trough collectors. To solve this knotty problem, based on the theory of the negative thermal-flux region, a novel parabolic trough solar receiver with a radiation shield was proposed, manufactured, and tested. In this framework, the proposed solar receiver is employed in the concentrated solar power plants using solar salt as the heat transfer fluid to analyze its feasibility in real solar power plants. In this study, the mathematical models of heat collection and economic assessment are established, and the simulation results yield a good agreement with the experimental data. The techno-economic performances of the solar power plants installing the proposed solar receivers in three typical areas under different installed capacities and thermal storage capacities are comprehensively investigated. The results demonstrate that the proposed solar receiver has a great potential for significant enhancement of the techno-economic performance of the solar power plant. The solar power plant with the proposed solar receivers located in Dunhuang can effectively improve the annual net electrical energy production by 9.77%, reduce the levelized cost of energy by 8.67%.

Suggested Citation

  • Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:629-643
    DOI: 10.1016/j.renene.2020.11.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031884X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    2. Li, Ruixiong & Zhang, Haoran & Wang, Huanran & Tu, Qingshi & Wang, Xuejun, 2019. "Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China," Energy, Elsevier, vol. 174(C), pages 310-322.
    3. Guiqiang Li & Gang Pei & Yuehong Su & Jie Ji & Dongyue Wang & Hongfei Zheng, 2016. "Performance study of a static low-concentration evacuated tube solar collector for medium-temperature applications," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 363-369.
    4. Wu, Zhiyong & Li, Shidong & Yuan, Guofeng & Lei, Dongqiang & Wang, Zhifeng, 2014. "Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver," Applied Energy, Elsevier, vol. 113(C), pages 902-911.
    5. Coccia, Gianluca & Di Nicola, Giovanni & Sotte, Marco, 2015. "Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat," Renewable Energy, Elsevier, vol. 74(C), pages 727-736.
    6. Ali, Mahmoud & Rady, Mohamed & Attia, Mohamed A.A. & Ewais, Emad M.M., 2020. "Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers," Renewable Energy, Elsevier, vol. 145(C), pages 1849-1861.
    7. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    8. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    9. Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Huang, Yihang & Hu, Mingke & Cao, Jingyu & Pei, Gang & Yang, Hongxing, 2020. "Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield," Applied Energy, Elsevier, vol. 268(C).
    10. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    11. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    12. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    13. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    14. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    15. Aly, Ahmed & Bernardos, Ana & Fernandez-Peruchena, Carlos M. & Jensen, Steen Solvang & Pedersen, Anders Branth, 2019. "Is Concentrated Solar Power (CSP) a feasible option for Sub-Saharan Africa?: Investigating the techno-economic feasibility of CSP in Tanzania," Renewable Energy, Elsevier, vol. 135(C), pages 1224-1240.
    16. Shouman, Enas R. & Khattab, N.M., 2015. "Future economic of concentrating solar power (CSP) for electricity generation in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1119-1127.
    17. Enas Raafat Maamoun Shouman, 2018. "Economic Future of Concentrating Solar Power for Electricity Generation," Chapters, in: Pawel Madejski (ed.), Thermal Power Plants - New Trends and Recent Developments, IntechOpen.
    18. Fernández, Angel G. & Muñoz-Sánchez, Belen & Nieto-Maestre, Javier & García-Romero, Ana, 2019. "High temperature corrosion behavior on molten nitrate salt-based nanofluids for CSP plants," Renewable Energy, Elsevier, vol. 130(C), pages 902-909.
    19. Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).
    20. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    21. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    22. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    2. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    3. Dabwan, Yousef N. & Pei, Gang & Kwan, Trevor Hocksun & Zhao, Bin, 2021. "An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors," Renewable Energy, Elsevier, vol. 179(C), pages 1009-1026.
    4. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    5. Hu, Tianxiang & Kwan, Trevor Hocksun & Zhang, Han & Wang, Qiliang & Pei, Gang, 2023. "Thermal performance investigation of the newly shaped vacuum tubes of parabolic trough collector system," Energy, Elsevier, vol. 278(C).
    6. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    7. Li, Pengcheng & Ye, Jing & Li, Jing & Wang, Yandong & Jiang, Xiaobin & Qian, Tongle & Pei, Gang & Liu, Xunfen, 2023. "Thermodynamic and techno-economic analysis of a direct thermal oil vaporization solar power system," Energy, Elsevier, vol. 282(C).
    8. Hassan, Muhammed A. & Fouad, Aya & Dessoki, Khaled & Al-Ghussain, Loiy & Hamed, Ahmed, 2023. "Performance analyses of supercritical carbon dioxide-based parabolic trough collectors with double-glazed receivers," Renewable Energy, Elsevier, vol. 215(C).
    9. Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
    10. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    11. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
    12. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Optical performance evaluation of a large solar dish/Stirling power generation system under self-weight load based on optical-mechanical integration method," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Wang, Qiliang & Shen, Boxu & Huang, Junchao & Yang, Honglun & Pei, Gang & Yang, Hongxing, 2021. "A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating," Applied Energy, Elsevier, vol. 285(C).
    3. San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
    4. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    6. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    7. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    8. Yang, Honglun & Wang, Qiliang & Zhong, Shuai & Kwan, Trevor Hocksun & Feng, Junsheng & Cao, Jingyu & Pei, Gang, 2020. "Spectral-spatial design and coupling analysis of the parabolic trough receiver," Applied Energy, Elsevier, vol. 264(C).
    9. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    10. Hassan, Muhammed A. & Fouad, Aya & Dessoki, Khaled & Al-Ghussain, Loiy & Hamed, Ahmed, 2023. "Performance analyses of supercritical carbon dioxide-based parabolic trough collectors with double-glazed receivers," Renewable Energy, Elsevier, vol. 215(C).
    11. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    12. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    13. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
    14. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    15. Ji, Junping & Tang, Hua & Jin, Peng, 2019. "Economic potential to develop concentrating solar power in China: A provincial assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    17. Hu, Tianxiang & Kwan, Trevor Hocksun & Zhang, Han & Wang, Qiliang & Pei, Gang, 2023. "Thermal performance investigation of the newly shaped vacuum tubes of parabolic trough collector system," Energy, Elsevier, vol. 278(C).
    18. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    19. Zhao, Kai & Jin, Hongguang & Gai, Zhongrui & Hong, Hui, 2022. "A thermal efficiency-enhancing strategy of parabolic trough collector systems by cascadingly applying multiple solar selective-absorbing coatings," Applied Energy, Elsevier, vol. 309(C).
    20. Bouhal, T. & Agrouaz, Y. & Kousksou, T. & Allouhi, A. & El Rhafiki, T. & Jamil, A. & Bakkas, M., 2018. "Technical feasibility of a sustainable Concentrated Solar Power in Morocco through an energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1087-1095.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:629-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.