IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223011969.html
   My bibliography  Save this article

Thermal performance investigation of the newly shaped vacuum tubes of parabolic trough collector system

Author

Listed:
  • Hu, Tianxiang
  • Kwan, Trevor Hocksun
  • Zhang, Han
  • Wang, Qiliang
  • Pei, Gang

Abstract

The parabolic trough collector (PTC) system is currently the most mature technology for concentrator solar power (CSP) plants. However, the huge radiative heat loss under high temperatures is one of the major obstacles restricting its thermal efficiency and development to the higher temperature. To reduce the radiative heat loss, this study proposes a newly shaped tube (NS-tube) with flatted upper and lower surfaces based on the Negative thermal-flux region theory. By considering different opening angles and tracking errors of the shaped tubes, an optical simulation is developed to analyze the heat flux distribution, and a heat transfer model is established to investigate the heat loss and thermal efficiency. Results show that the thermal efficiency of the NS-tube with optimum opening angles can be improved by 0.62%–4.64% compared to the original tube. The improvement effect is more obvious at high operating temperatures and low Direct Normal Irradiance. Additionally, the thermal stress variation is also analyzed by Ansys fluent. The result shows that the thermal stress of the NS-tube is even smaller than that of the original tube due to the uniform thermal flow effect caused by the flattened lower surface.

Suggested Citation

  • Hu, Tianxiang & Kwan, Trevor Hocksun & Zhang, Han & Wang, Qiliang & Pei, Gang, 2023. "Thermal performance investigation of the newly shaped vacuum tubes of parabolic trough collector system," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011969
    DOI: 10.1016/j.energy.2023.127802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    2. Gong, Jing-hu & Wang, Jun & Lund, Peter D., 2021. "Improving stability and heat transfer through a beam in a semi-circular absorber tube of a large-aperture trough solar concentrator," Energy, Elsevier, vol. 228(C).
    3. Bellos, E. & Tzivanidis, C. & Antonopoulos, K.A. & Gkinis, G., 2016. "Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube," Renewable Energy, Elsevier, vol. 94(C), pages 213-222.
    4. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    5. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2022. "Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors," Renewable Energy, Elsevier, vol. 181(C), pages 786-802.
    6. Yang, Honglun & Wang, Qiliang & Zhong, Shuai & Kwan, Trevor Hocksun & Feng, Junsheng & Cao, Jingyu & Pei, Gang, 2020. "Spectral-spatial design and coupling analysis of the parabolic trough receiver," Applied Energy, Elsevier, vol. 264(C).
    7. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    8. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    9. Wang, Qiliang & Shen, Boxu & Huang, Junchao & Yang, Honglun & Pei, Gang & Yang, Hongxing, 2021. "A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating," Applied Energy, Elsevier, vol. 285(C).
    10. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    11. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    13. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    14. Eisapour, M. & Eisapour, Amir Hossein & Hosseini, M.J. & Talebizadehsardari, P., 2020. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Hu, Tianxiang & Zhang, Han & Kwan, Trevor Hocksun & Wang, Qiliang & Pei, Gang, 2024. "Thermal performance analysis of eccentric double-selective-coated parabolic trough receivers with flat upper surface," Renewable Energy, Elsevier, vol. 220(C).
    3. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    4. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    5. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    6. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    7. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
    9. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    10. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    11. Zhao, Kai & Jin, Hongguang & Gai, Zhongrui & Hong, Hui, 2022. "A thermal efficiency-enhancing strategy of parabolic trough collector systems by cascadingly applying multiple solar selective-absorbing coatings," Applied Energy, Elsevier, vol. 309(C).
    12. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    13. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    14. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    15. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    16. Yang, Honglun & Wang, Qiliang & Zhong, Shuai & Kwan, Trevor Hocksun & Feng, Junsheng & Cao, Jingyu & Pei, Gang, 2020. "Spectral-spatial design and coupling analysis of the parabolic trough receiver," Applied Energy, Elsevier, vol. 264(C).
    17. Chakraborty, Oveepsa, 2023. "Influence of spinning flower structure inserts in the thermal performance of LS-2 model of parabolic trough collector with ternary hybrid nanofluid," Renewable Energy, Elsevier, vol. 210(C), pages 215-228.
    18. Nikkerdar, F. & Rahimi, M. & Ranjbar, A.A. & Pakrouh, R. & Bahrampoury, R., 2021. "Solar assisted thermal storage system for free heating applications in moderate climates: A case study," Energy, Elsevier, vol. 220(C).
    19. Wang, Qiliang & Yao, Yao & Shen, Yongting & Shen, Zhicheng & Yang, Hongxing, 2024. "A mutually beneficial system incorporating parabolic trough concentrating solar power system with photovoltaics: A comprehensive techno-economic analysis," Applied Energy, Elsevier, vol. 360(C).
    20. Hassan, Muhammed A. & Fouad, Aya & Dessoki, Khaled & Al-Ghussain, Loiy & Hamed, Ahmed, 2023. "Performance analyses of supercritical carbon dioxide-based parabolic trough collectors with double-glazed receivers," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.